【題目】已知點p(x,y)是直線kx+y+4=0(k>0)上一動點,PA、PB是圓C:x2+y2﹣2y=0的兩條切線,A、B是切點,若四邊形PACB的最小面積是2,則k的值為 .
科目:高中數學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對100名六年級學生進行了問卷調查得到如圖聯表.且平均每天喝500ml以上為常喝,體重超過50kg為肥胖.已知在全部100人中隨機抽取1人,抽到肥胖的學生的概率為0.8.
常喝 | 不常喝 | 合計 | |
肥胖 | 60 | ||
不肥胖 | 10 | ||
合計 | 100 |
(1)求肥胖學生的人數并將上面的列聯表補充完整;
(2)是否有95%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由. 附:參考公式:x2=
P(x2≥x0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 的三個內角 A,B,C 成等差數列,且 a,b,c 分別為角 A,B,C 的對邊,求證:(a+b)-1+(b+c)-1=3(a+b+c)-1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點E為正方形ABCD邊CD上異于點C,D的動點,將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個說法中正確的個數是( )
①存在點E使得直線SA⊥平面SBC
②平面SBC內存在直線與SA平行
③平面ABCE內存在直線與平面SAE平行.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數列.
(1)求f(30)的值.
(2)若a、b、c是兩兩不相等的正數,且a、b、c成等比數列,試判斷f(a)+f(c)與2f(b)的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(Ⅰ)將V表示成r的函數V(r),并求該函數的定義域;
(Ⅱ)討論函數V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com