【題目】某沿海地區養殖的一種特色海鮮上市時間僅能持續5個月,預測上市初期和后期會因供不應不足使價格呈持續上漲態勢,而中期又將出現供大于求使價格連續下跌.現有三種價格模擬函數:
① ;②
;③
.(以上三式中、
均為常數,且
)
(1)為準確研究其價格走勢,應選哪種價格模擬函數(不必說明理由)
(2)若 ,
,求出所選函數
的解析式(注:函數定義域是
.其中
表示8月1日,
表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養殖戶的經濟效益,當地政府計劃在價格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.
【答案】
(1)解:因為上市初期和后期價格呈持續上漲態勢,而中期又將出現價格連續下跌,所以在所給出的函數中應選模擬函數 .
(2)解:由 ,即得
,又
,所以
,所以
.
(3)解:因為 ,所以
,令
得,
或
;令
得,
. 又因為
,所以函數
在
和
內單調遞增,在
內單調遞減,所以可以預測這種海鮮將在9月、10月兩個月內價格下跌.
【解析】(I)利用價格呈現前幾次與后幾次均連續上升,中間幾次連續下降的趨勢,故可從三個函數的單調上考慮,前面兩個函數沒有出現兩個遞增區間和一個遞減區間,應選f(x)=x(x-q)2+p為其模擬函數;
(II)由題中條件:f(0)=4,f(2)=6,得方程組,求出p,q即可,從而得到f(x)的解析式;
(III)確定函數解析式,利用導數小于0,即可預測該果品在哪幾個月份內價格下跌.
解函數關系未知的應用題
①閱讀理解題意
看一看可以用什么樣的函數模型,初步擬定函數類型;
②抽象函數模型
在理解問題的基礎上,把實際問題抽象為函數模型;
③研究函數模型的性質
根據函數模型,結合題目的要求,討論函數模型的有關性質,獲得函數模型的解;
④得出問題的結論
根據函數模型的解,結合實際問題的實際意義和題目的要求,給出實際問題的解.
科目:高中數學 來源: 題型:
【題目】隨著網絡營銷和電子商務的興起,人們的購物方式更具多樣化,某調查機構隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網購,3名傾向于選擇實體店.
(1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;
(2)若從這10名購物者中隨機抽取3名,設X表示抽到傾向于選擇網購的男性購物者的人數,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B是兩個非空集合,定義運算A×B={x|x∈A∪B且xA∩B}.已知A={x|y= },B={y|y=2x , x>0},則A×B=( )
A.[0,1]∪(2,+∞)
B.[0,1)∪[2,+∞)
C.[0,1]
D.[0,2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓 的離心率為
,其左焦點到點
的距離為
.不過原點
的直線
與
相交于
兩點,且線段
被直線
平分.
(1)求橢圓 的方程;
(2)求 的面積取最大值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養殖密度x(單位:尾/立方米)的函數.當x不超過4尾/立方米時,v的值為2千克/年;當4<x≤20時,v是x的一次函數,當x達到20尾/立方米時,因缺氧等原因,v的值為0千克/年.
(1)當0<x≤20時,求函數v關于x的函數表達式;
(2)當養殖密度x為多大時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確命題的個數是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com