【題目】已知橢圓和雙曲線有共同焦點 ,
是它們的一個交點,且
,記橢圓和雙曲線的離心率分別為
,則
的最大值為( )
A.
B.
C.2
D.3
科目:高中數學 來源: 題型:
【題目】某沿海地區養殖的一種特色海鮮上市時間僅能持續5個月,預測上市初期和后期會因供不應不足使價格呈持續上漲態勢,而中期又將出現供大于求使價格連續下跌.現有三種價格模擬函數:
① ;②
;③
.(以上三式中、
均為常數,且
)
(1)為準確研究其價格走勢,應選哪種價格模擬函數(不必說明理由)
(2)若 ,
,求出所選函數
的解析式(注:函數定義域是
.其中
表示8月1日,
表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養殖戶的經濟效益,當地政府計劃在價格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實,黃實,利用2×勾×股+(股﹣勾)2=4×朱實+黃實=弦實,化簡,得勾2+股2=弦2 , 設勾股中勾股比為1: ,若向弦圖內隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為( )
A.866
B.500
C.300
D.134
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為
,
.過
且斜率為
的直線
與橢圓
相交于點
,
.當
時,四邊形
恰在以
為直徑,面積為
的圓上.
(Ⅰ)求橢圓 的方程;
(Ⅱ)若 ,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓錐曲線 (
是參數)和定點
,
、
是圓錐曲線的左、右焦點.
(1)求經過點 且垂直于直線
的直線
的參數方程;
(2)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,求直線
的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系下,知圓O:ρ=cosθ+sinθ和直線 .
(1)求圓O與直線l的直角坐標方程;
(2)當θ∈(0,π)時,求圓O和直線l的公共點的極坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com