【題目】若f(x)=a+ 是奇函數,則a= .
【答案】﹣
【解析】解:函數 的定義域為R,且為奇函數,
則 f(0)=a+ =0,得a+
=0,得 a=﹣
,
檢驗:若a=﹣ ,則f(x)=
+
=
,
又f(﹣x)= =﹣
=﹣f(x) 為奇函數,符合題意.
所以答案是﹣ .
【考點精析】本題主要考查了函數的奇函數和函數奇偶性的性質的相關知識點,需要掌握一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數;在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】設集合P={m|﹣1<m≤0},Q={m|mx2+4mx﹣4<0對任意x恒成立},則P與Q的關系是( )
A.PQ
B.QP
C.P=Q
D.P∩Q=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓C1: +y2=1,x軸被曲線C2:y=x2﹣b截得的線段長等于C1的長半軸長.
(1)求實數b的值;
(2)設C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA、MB分別與C1相交于D、E.
①證明: =0;
②記△MAB,△MDE的面積分別是S1 , S2 . 若 =λ,求λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)當a= 時,求函數f(x)的值域;
(2)當f(x)在區間 上為增函數時,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實數a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,常數a>0.
(1)設mn>0,證明:函數f(x)在[m,n]上單調遞增;
(2)設0<m<n且f(x)的定義域和值域都是[m,n],求常數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為 . .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知經過點A(﹣4,0)的動直線l與拋物線G:x2=2py(p>0)相交于B、C,當直線l的斜率是 時,
. (Ⅰ)求拋物線G的方程;
(Ⅱ)設線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com