精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)當a= 時,求函數f(x)的值域;
(2)當f(x)在區間 上為增函數時,求實數a的取值范圍.

【答案】
(1)解:當 時, 恒成立,

故定義域為R,

又∵ ,且函數 在(0,+∞)單調遞減,

,即函數f(x)的值域為(﹣∞,1]


(2)解:依題意可知,

i)當a>1時,由復合函數的單調性可知,必須ax2﹣x+1在 上遞增,且ax2﹣x+1>0對 恒成立.

故有 ,解得:a≥2;

ii)當0<a<1時,同理必須ax2﹣x+1在 上遞減,且ax2﹣x+1>0對 恒成立.

故有 ,解得:

綜上,實數a的取值范圍為


【解析】(1)當a=時,可判斷出函數f(x)的定義域為R,結合復合函數的單調性,不難得出f(x)的值域,(2)對a進行分類討論,結合復合函數的單調性,解出a的取值范圍.
【考點精析】利用函數的值域和復合函數單調性的判斷方法對題目進行判斷即可得到答案,需要熟知求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺担@個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的;復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若關于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充分必要條件
C.命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
D.命題p:?x∈R,使得x2+x﹣1<0,則¬p:?x∈R,使得x2+x﹣1≥0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,

(1)畫出函數f(x)的圖象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集為R,集合A={x|y=lgx+ },B={x| <2xa≤8}.
(1)當a=0時,求(RA)∩B;
(2)若A∪B=B,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】人們生活水平的提高,越來越注重科學飲食.營養學家指出,成人良好的日常飲食應該至少提供0.075kg的碳水化合物,0.06kg的蛋白質,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質,0.14kg脂肪,花費28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質,0.07kg脂肪,花費21元.為了滿足營養專家指出的日常飲食要求,同時使花費最低,每天需要同時食用食物A和食物B多少kg?最低花費是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若f(x)=a+ 是奇函數,則a=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知復數z=3+bi(b∈R),且(1+3i)z為純虛數.
(1)求復數z;
(2)若 ,求復數w的模|w|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐A﹣BCDE中,底面BCDE為平行四邊形,平面ABE⊥平面BCDE,AB=AE,DB=DE,∠BAE=∠BDE=90°
(1)求異面直線AB與DE所成角的大小;
(2)求二面角B﹣AE﹣C的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视