精英家教網 > 高中數學 > 題目詳情

設函數,若函數處與直線相切,
(1)求實數,的值;(2)求函數上的最大值.

(1),;(2)

解析試題分析:(1)對函數求導,由函數處與直線相切,可知,.可得的值.(2)求導,由導函數可得上單調遞增,在,則函數時取得最大值.
試題解析:解:(1)函數處與直線相切
解得             5分
(2)        7分
時,令;令,得
上單調遞增,在(1,e)上單調遞減,12分
考點:本題主要考查導數的計算,利用導數研究函數的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判斷f(x)的單調性;.
(2)若x>1時,f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)若,求函數的極值點;
(2)若在區間內單調遞增,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2ax--(2+a)lnx(a≥0).
(1)當a=0時,求f(x)的極值;
(2)當a>0時,討論f(x)的單調性;
(3)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求實數m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如右圖,由曲線與直線,所圍成平面圖形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處切線為.
(1)求的解析式;
(2)設,表示直線的斜率,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)若函數在區間(-2,0)內恰有兩個零點,求a的取值范圍;
(2)當a=1時,求函數在區間[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)當a≤0時,求f(x)的單調區間。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视