【題目】已知函數在
處取得極值
,其中
為常數.若對任意
,不等式
恒成立,求
的取值范圍.
【答案】.
【解析】試題分析: 函數在
處取得極值
,即
,
,列出方程組可求出a,b的值,代入函數
求出解析式,對函數求導判斷單調性,求出函數的極小值, 且此極小值也是最小值, 要使
對任意
恒成立,只需
小于等于函數的最小值,代入解出c的取值范圍即可.
試題解析:
由題意知f(1)=b-c=-3-c,因此b=-3.
對f(x)求導,得
f′(x)=4ax3ln x+ax4·+4bx3
=x3(4aln x+a+4b).
由題意知f′(1)=0,得a+4b=0,解得a=12,
從而f′(x)=48x3ln x(x>0).令f′(x)=0,解得x=1.
當0<x<1時,f′(x)<0,此時f(x)為減函數;
當x>1時,f′(x)>0,此時f(x)為增函數.
所以f(x)在x=1處取得極小值f(1)=-3-c,
并且此極小值也是最小值.
所以要使f(x)≥-2c2(x>0)恒成立,只需-3-c≥-2c2即可.
整理得2c2-c-3≥0,解得c≥或c≤-1.
所以c的取值范圍為.
點睛: 本題考查利用導數判斷函數的單調性,求函數的極值和最值以及函數的恒成立問題,屬于中檔題目.恒成立問題以及可轉化為恒成立問題的問題,往往可利用參變分離的方法,轉化為求函數最值處理.也可構造新函數然后利用導數來求解,注意利用數形結合的數學思想方法.
科目:高中數學 來源: 題型:
【題目】如圖,F1,F2分別是橢圓C:的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現這兩名學生在相同條件下各射箭10次,命中的環數如表:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環數的平均數和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}是由正數組成的等比數列,公比q=2,且a1a2a3…a30=230 , 那么a3a6a9…a30等于( )
A.210
B.220
C.216
D.215
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張A、B型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應生產A、B型桌子各多少張,才能獲得利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明計劃在8月11日至8月20日期間游覽某主題公園,根據旅游局統計數據,該主題公園在此期間“游覽舒適度”(即在園人數與景區主管部門核定的最大瞬時容量之比, 以下為舒適,
為一般,
以上為擁擠),情況如圖所示,小明隨機選擇8月11日至8月19日中的某一天到達該主題公園,并游覽
天.
(1)求小明連續兩天都遇上擁擠的概率;
(2)設是小明游覽期間遇上舒適的天數,求
的分布列和數學期望;
(3)由圖判斷從哪天開始連續三天游覽舒適度的方差最大?(結論不要求證明)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com