精英家教網 > 高中數學 > 題目詳情
曲線在點處的切線方程為________________.
.

試題分析:,所以,當時,,故曲線在點處的切線方程為,即.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知a為給定的正實數,m為實數,函數f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上無極值點,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)若曲線處的切線相互平行,求的值;
(2)試討論的單調性;
(3)設,對任意的,均存在,使得.試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為自然對數的底數),為常數),是實數集上的奇函數.
(1)求證:;
(2)討論關于的方程:的根的個數;
(3)設,證明:為自然對數的底數).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)當時,求曲線處的切線方程;
(2)當時,求函數的單調區間;
(3)在(2)的條件下,設函數,若對于[1,2],
[0,1],使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數上可導,其導函數為,若滿足:,,則下列判斷一定正確的是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知可導函數的導函數滿足,則不等式的解集是   

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義:如果函數在區間上存在,滿足則稱函數在區間上的一個雙中值函數,已知函數是區間上的雙中值函數,則實數的取值范圍是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

記定義在R上的函數的導函數為.如果存在,使得成立,則稱為函數在區間上的“中值點”.那么函數 在區間[-2,2]上的“中值點”為____

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视