【題目】已知橢圓的兩個焦點分別為
,離心率為
,過
的直線
與橢圓
交于
兩點,且
的周長為
(1)求橢圓的方程;
(2)若直線與橢圓
分別交于
兩點,且
,試問點
到直線
的距離是否為定值,證明你的結論.
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為
,且過點P
。
(1)求橢圓的標準方程;
(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某公園內有兩條道路,
,現計劃在
上選擇一點
,新建道路
,并把
所在的區域改造成綠化區域.已知
,
.
(1)若綠化區域的面積為1
,求道路
的長度;
(2)若綠化區域改造成本為10萬元/
,新建道路
成本為10萬元/
.設
(
),當
為何值時,該計劃所需總費用最小?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在平行于
軸的直線
上,且
與
軸的交點為
,動點
滿足
平行于
軸,且
.
(1)求出點的軌跡方程.
(2)設點,
,求
的最小值,并寫出此時
點的坐標.
(3)過點的直線與
點的軌跡交于
.
兩點,求證
.
兩點的橫坐標乘積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓關于直線
對稱,圓心C在第二象限,半徑為
.
(1)求圓C的方程.
(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(不要求過程);若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com