【題目】已知橢圓的上、下焦點分別為
,
,離心率為
,點
在橢圓C上,延長
交橢圓于N點.
(1)求橢圓C的方程;
(2)P,Q為橢圓上的點,記線段MN,PQ的中點分別為A,B(A,B異于原點O),且直線AB過原點O,求面積的最大值.
科目:高中數學 來源: 題型:
【題目】若四面體ABCD的三組對棱分別相等,即,
,
,給出下列結論:
①四面體ABCD每組對棱相互垂直;
②四面體ABCD每個面的面積相等;
③從四面體ABCD每個頂點出發的三條棱兩兩夾角之和大于而小于
;
④連接四面體ABCD每組對棱中點的線段相互垂直平分;
⑤從四面體ABCD每個頂點出發的三條棱的長可作為一個三角形的三邊長.
其中正確結論的序號是( )
A.②④⑤B.①②④⑤C.①③④D.②③④⑤
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統紋樣,為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲2000個點,己知恰有800個點落在陰影部分,據此可估計陰影部分的面積是
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商店投入38萬元經銷某種紀念品,經銷時間共60天,為了獲得更多的利潤,商店將每天獲得的利潤投入到次日的經營中,市場調研表明,該商店在經銷這第一產品期間第天的利潤
(單位:萬元,
),記第
天的利潤率
,例如
.
(1)求的值;
(2)求第天的利潤率
;
(3)該商店在經銷此紀念品期間,哪一天的利潤率最大?并求該天的利潤率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】法國數學家布豐提出一種計算圓周率的方法——隨機投針法,受其啟發,我們設計如下實驗來估計
的值:先請200名同學每人隨機寫下一個橫、縱坐標都小于1的正實數對
;再統計兩數的平方和小于1的數對
的個數
;最后再根據統計數
來估計
的值.已知某同學一次試驗統計出
,則其試驗估計
為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,直線
過點
,且與拋物線
交于
、
兩點,
.
(1)求的取值范圍;
(2)若,點
的坐標為
,直線
與拋物線的另一個交點為
,直線
與拋物線的另一個交點為
,直線
與
軸交于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】業界稱“中國芯”迎來發展和投資元年,某芯片企業準備研發一款產品,研發啟動時投入資金為A(A為常數)元,之后每年會投入一筆研發資金,n年后總投入資金記為,經計算發現當
時,
近似地滿足
,其中
,
為常數,
.已知3年后總投入資金為研發啟動是投入資金的3倍,問:
(1)研發啟動多少年后,總投入資金是研發啟動時投入資金的8倍;
(2)研發啟動后第幾年投入的資金最多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系上,有一點列,設點
的坐標
(
),其中
. 記
,
,且滿足
(
).
(1)已知點,點
滿足
,求
的坐標;
(2)已知點,
(
),且
(
)是遞增數列,點
在直線
:
上,求
;
(3)若點的坐標為
,
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com