精英家教網 > 高中數學 > 題目詳情

【題目】已知分別是離心率的橢圓的左右項點,P是橢圓E的上頂點,且.

1)求橢圓E的方程;

2)若動直線過點,且與橢圓E交于A、B兩點,點M與點B關于y軸對稱,求證:直線恒過定點.

【答案】1

2)證明見解析

【解析】

1)由向量數量積的坐標運算可求得,再由離心率可得,然后求得,得橢圓方程;

2)當直線的斜率存在時,設直線,,則

由直線方程與橢圓方程聯立并消元后應用韋達定理得,然后寫出直線方程并變形后代入,可得定點坐標,再驗證直線斜率不存在時,直線也過這個定點即可.

解:(1)由題意得,,

,所以

,所以,,所以橢圓E的方程為.

2)當直線的斜率存在時,設直線,,,則,

,消去y得.由,

,所以.

,

直線的方程為

,

因為,,所以,

直線的方程為可化為,則直線恒過定點.

當直線的斜率不存在時,直線也過點,綜上知直線恒過定點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論函數上的單調性;

2)當時,設為函數圖象上任意一點.直線的斜率為,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某保險公司對一個擁有20000人的企業推出一款意外險產品,每年每位職工只要交少量保費,發生意外后可一次性獲得若干賠償金,保險公司把企業的所有崗位共分為三類工種,從事這三類工種的人數分別為12000,6000,2000,由歷史數據統計出三類工種的賠付頻率如下表(并以此估計賠付概率):

已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業務過程中的固定支出為每年10萬元.

(1)求保險公司在該業務所或利潤的期望值;

(2)現有如下兩個方案供企業選擇:

方案1:企業不與保險公司合作,職工不交保險,出意外企業自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業開展這項工作的固定支出為每年12萬元;

方案2:企業與保險公司合作,企業負責職工保費的70%,職工個人負責保費的30%,出險后賠償金由保險公司賠付,企業無額外專項開支.

請根據企業成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中, 邊上的中線長為3,且, .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中,,則下列選項中的條件使得僅有一個零點的有(

A.為奇函數B.

C.,D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】目前,新冠病毒引發的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫院組織專家統計了該地區500名患者新冠病毒潛伏期的相關信息,數據經過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數的患者,稱為短潛伏者,潛伏期高于平均數的患者,稱為長潛伏者”.

1)求這500名患者潛伏期的平均數(同一組中的數據用該組區間的中點值作代表),并計算出這500名患者中“長潛伏者”的人數;

2)為研究潛伏期與患者年齡的關系,以潛伏期是否高于平均數為標準進行分層抽樣,從上述500名患者中抽取300人,得到如下列聯表,請將列聯表補充完整,并根據列聯表判斷是否有97.5%的把握認為潛伏期長短與患者年齡有關;

短潛伏者

長潛伏者

合計

60歲及以上

90

60歲以下

140

合計

300

3)研究發現,某藥物對新冠病毒有一定的抑制作用,需要在抽取的300人中分層選取760歲以下的患者做Ⅰ期臨床試驗,再從選取的7人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有1人為“長潛伏者”的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項目.為預估今年7月份游客購買水果的情況,隨機抽樣統計了去年7月份100名游客的購買金額.分組如下:,, ,得到如圖所示的頻率分布直方圖:

(1)請用抽樣的數據估計今年7月份游客人均購買水果的金額(同一組中的數據用該組區間中點作代表).

(2)若把去年7月份購買水果不低于80元的游客,稱為“水果達人”. 填寫下面列聯表,并根據列聯表判斷是否有95%的把握認為“水果達人”與性別有關系?

水果達人

非水果達人

合計

10

30

合計

(3)為吸引顧客,商家特推出兩種促銷方案.方案一:每滿80元可立減10元;方案二:金額超過80元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.若每斤水果10元,你打算購買12斤水果,請從實際付款金額的數學期望的角度分析應該選擇哪種優惠方案.

附:參考公式和數據:,.臨界值表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】母線長為,底面半徑為的圓錐內有一球,與圓錐的側面、底面都相切,現放入一些小球,小球與圓錐底面、側面、球都相切,這樣的小球最多可放入__________個.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形中,邊上異于端點的動點,于點,將矩形沿折疊至處,使面.分別為的中點.

1)證明://面

2)設,當x為何值時,四面體的體積最大,并求出最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视