【題目】如圖,矩形中,
,
是
邊上異于端點的動點,
于點
,將矩形
沿
折疊至
處,使面
面
.點
分別為
的中點.
(1)證明://面
;
(2)設,當x為何值時,四面體
的體積最大,并求出最大值.
科目:高中數學 來源: 題型:
【題目】已知、
分別是離心率
的橢圓
的左右項點,P是橢圓E的上頂點,且
.
(1)求橢圓E的方程;
(2)若動直線過點
,且與橢圓E交于A、B兩點,點M與點B關于y軸對稱,求證:直線
恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著網絡的普及,數碼產品早已走進千家萬戶的生活,為了節約資源,促進資源循環利用,折舊產品回收行業得到迅猛發展,電腦使用時間越長,回收價值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時間進行了統計,得到如圖所示的頻率分布直方圖,在如圖對時間使用的分組中,將使用時間落入各組的頻率視為概率.
(1)若在該市場隨機選取1個2018年成交的二手電腦,求其使用時間在上的概率;
(2)根據電腦交易市場往年的數據,得到如圖所示的散點圖及一些統計量的值,其中(單位:年)表示折舊電腦的使用時間,
(單位:百元)表示相應的折舊電腦的平均交易價格.
由散點圖判斷,可采用作為該交易市場折舊電腦平均交易價格與使用年限
的回歸方程,若
,
,選用如下參考數據,求
關于
的回歸方程,并預測在區間
(用時間組的區間中點值代表該組的值)上折舊電腦的價格.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
附:參考公式:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.參考數據:
,
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據《環境空氣質量指數技術規定(試行)》規定:空氣質量指數在區間
、
、
、
、
、
時,其對應的空氣質量狀況分別為優、良、輕度污染、中度污染、重度污染、嚴重污染.如圖為某市2019年10月1日至10月7日的空氣質量指數
直方圖,在這7天內,下列結論正確的是( )
A.前4天的方差小于后3天
的方差
B.這7天內空氣質量狀況為嚴重污染的天數為3
C.這7天的平均空氣質量狀況為良
D.空氣質量狀況為優或良的概率為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為矩形,
,側面
為等邊三角形且垂直于底面
,
是
的中點.
(1)在棱上取一點
使直線
∥平面
并證明;
(2)在(1)的條件下,當棱上存在一點
,使得直線
與底面
所成角為
時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《孫子算經》是中國古代重要的數學著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個?”現有這樣的一個正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
,(
為參數),將曲線
經過伸縮變換
后得到曲線
,在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)說明曲線是哪一種曲線,并將曲線
的方程化為極坐標方程;
(2)已知點是曲線
上的任意一點,求點
到直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設拋物線C1:的準線1與x軸交于橢圓C2:
的右焦點F2,F1為C2的左焦點.橢圓的離心率為
,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,M為C1上一動點,且在P,Q之間移動.
(1)當取最小值時,求C1和C2的方程;
(2)若△PF1F2的邊長恰好是三個連續的自然數,當△MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com