精英家教網 > 高中數學 > 題目詳情
設△ABC的三邊BC=4pq,CA=3p2+q2,AB=3p2+2pq-q2,求∠B,并證∠B為∠A及∠C的等差中項.
由余弦定理可得:
cosB=
AB2+BC2-CA2
2AB•BC
=
(3p2+2pq-q22+(4pq)2-(3p2+q22
2(3p2+2pq-q2)• 4pq

=
4pq(3p2+2pq-q2
8pq(3p2+2pq-q2
=
1
2

∴∠B=60°,
∵∠C-∠B=(180°-∠A-∠B)-∠B=60°-∠A
=∠B-∠A,
?∴∠B是∠A與∠C的等差中項.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設△ABC的三邊BC=4pq,CA=3p2+q2,AB=3p2+2pq-q2,求∠B,并證∠B為∠A及∠C的等差中項.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區一模)記實數x1,x2,…,xn中的最大數為max{x1,x2,…,xn},最小數為min{x1,x2,…,xn}.設△ABC的三邊邊長分別為a,b,c,且a≤b≤c,定義△ABC的傾斜度為t=max{
a
b
b
c
,
c
a
}•min{
a
b
,
b
c
,
c
a
}

(。┤簟鰽BC為等腰三角形,則t=
1
1
;
(ⅱ)設a=1,則t的取值范圍是
[1,
1+
5
2
)
[1,
1+
5
2
)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設△ABC的三邊BC=4pq,CA=3p2+q2,AB=3p2+2pq-q2,求∠B,并證∠B為∠A及∠C的等差中項.

查看答案和解析>>

科目:高中數學 來源:1951年全國統一高考數學試卷(解析版) 題型:解答題

設△ABC的三邊BC=4pq,CA=3p2+q2,AB=3p2+2pq-q2,求∠B,并證∠B為∠A及∠C的等差中項.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视