【題目】已知函數f(x)=x2+alnx(a為實常數)
(Ⅰ)若a=﹣2,求證:函數f(x)在(1,+∞)上是增函數;
(Ⅱ)求函數f(x)在[1,e]上的最小值及相應的x值;
(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數a的取值范圍.
【答案】【解答】解:(Ⅰ)當a=﹣2時,f(x)=x2﹣2lnx,x∈(0,+∞),
則f′(x)=2x﹣ =
(x>0)
由于f′(x)>0在(0,+∞)上恒成立,
故函數在(1,+∞)上是增函數;
(Ⅱ)f′(x)=2x+ =
(x>0),
當x∈[1,e]時,2x2+a∈[a+2,a+2e2].
①若a≥﹣2,f′(x)在[1,e]上非負(僅當a=﹣2,x=1時,f′(x)=0),
故函數f(x)在[1,e]上是增函數,此時[f(x)]min=f(1)=1.
②若﹣2e2<a<﹣2,當x= 時,f′(x)=0;
當1≤x< 時,f′(x)<0,此時f(x)是減函數;
當 <x≤e時,f′(x)>0,此時f(x)是增函數.
故[f(x)]min=f( )=
ln(﹣
)﹣
.
③若a≤﹣2e2,f'(x)在[1,e]上非正(僅當a=﹣2e2,x=e時,f'(x)=0),
故函數f(x)在[1,e]上是減函數,此時[f(x)]min=f(e)=a+e2.
綜上可知,當a≥﹣2時,f(x)的最小值為1,相應的x值為1;
當﹣2e2<a<﹣2時,f(x)的最小值為 ln(﹣
)﹣
,相應的x值為
;
當a≤﹣2e2時,f(x)的最小值為a+e2,相應的x值為e.
(Ⅲ)不等式f(x)≤(a+2)x,可化為a(x﹣lnx)≥x2﹣2x.
∵x∈[1,e],∴lnx≤1≤x且等號不能同時取,所以lnx<x,即x﹣lnx>0,
因而 (x∈[1,e])
令 (x∈[1,e]),則
,
當x∈[1,e]時,x﹣1≥0,lnx≤1,x+2﹣2lnx>0,
從而g′(x)≥0(僅當x=1時取等號),所以g(x)在[1,e]上為增函數,
故g(x)的最小值為g(1)=﹣1,所以a的取值范圍是[﹣1,+∞).
【解析】(Ⅰ)利用導數證明函數的單調性,導數大于0,函數單調遞增。
(Ⅱ)利用導數研究函數的單調性,最值情況。注意分3種情況①若a≥﹣2②若﹣2e2<a<﹣2③若a≤﹣2e2。
(Ⅲ)不等式f(x)≤(a+2)x成立,可化為成立問題。再利用導數研究其單調性,即可求出。
科目:高中數學 來源: 題型:
【題目】設函數f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函數f(x)的最小正周期和單調增區間;
(2)將函數f(x)的圖象向右平移 個單位長度后得到函數g(x)的圖象,求函數g(x)在區間
上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線x2=4y的焦點F的直線l與拋物線相交于A、B兩點.
(1)設拋物線在A、B處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程.
(2)若直線l與橢圓 +
=1的交點為C,D,問是否存在這樣的直線l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年一交警統計了某路段過往車輛的車速大小與發生的交通事故次數,得到如下表所示的數據:
車速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)請畫出上表數據的散點圖;
(Ⅱ)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程=
x+
;
(Ⅲ)試根據(Ⅱ)求出的線性回歸方程,預測在2016年該路段路況及相關安全設施等不變的情況下,車速達到110km/h時,可能發生的交通事故次數.
(附:b=,
=
-
,其中
,
為樣本平均值)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等差數列,且a3=-6,a6=0.
(1)求{an}的通項公式;
(2)若等比數列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國加入WTO時,根據達成的協議,某產品的市場供應量P與市場價格x的關系近似滿足P(x)=2(1-kt)(x-b)2(其中t為關銳的稅率,且t∈[0, ),x為市場價格,b、k為正常數).當t=
時的市場供應量曲線如圖所示.
(1)根據圖象求b、k的值;
(2)記市場需求量為Q,它近似滿足Q(x)=,當P=Q時的市場價格稱為市場平衡價格,為使市場平衡價格不低于9元,求稅率的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列是公差為2的等差數列,數列
滿足
,且
.
(1)求數列,
的通項公式;
(2)設數列{cn}滿足,數列{cn}的前n項和為Tn,若不等式
對一切n∈N*恒成立,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現將初賽答卷成績(得分均為整數,滿分為100分)進行統計,制成如下頻率分布表.
分數(分數段) | 頻數(人數) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
(2)決賽規則如下:參加決賽的每位同學依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學進入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學恰好答滿4道題而獲得一等獎的概率;
②記該同學決賽中答題個數為X,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發,繞著點O順時針方向旋轉至OD,在旋轉的過程中,記為
OP所經過的在正方形ABCD內的區域(陰影部分)的面積
,那么對于函數
有以下三個結論:
①;
②任意,都有
;
③任意且
,都有
.
其中正確結論的序號是__________. (把所有正確結論的序號都填上).
【答案】①②
【解析】試題分析:①:如圖,當時,
與
相交于點
,∵
,則
,
∴,∴①正確;②:由于對稱性,
恰好是正方形的面積,
∴,∴②正確;③:顯然
是增函數,∴
,∴③錯誤.
考點:函數性質的運用.
【題型】填空題
【結束】
17
【題目】化簡
(1)
(2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com