已知點為
軸上的動點,點
為
軸上的動點,點
為定點,且滿足
,
.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)過點且斜率為
的直線
與曲線
交于兩點
,
,試判斷在
軸上是否存在點
,使得
成立,請說明理由.
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,已知點P,曲線C的參數方程為
(φ為參數)。以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
。
(1)判斷點P與直線l的位置關系,說明理由;
(2)設直線l與直線C的兩個交點為A、B,求的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
選修4-4:坐標系與參數方程
在直角坐標系中,直線L的方程為x-y+4=0,曲線C的參數方程為
(1)求曲線C的普通方程;
(2)設點Q是曲線C上的一個動點,求它到直線L的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示的曲線是由部分拋物線
和曲線
“合成”的,直線
與曲線
相切于點
,與曲線
相切于點
,記點
的橫坐標為
,其中
.
(1)當時,求
的值和點
的坐標;
(2)當實數取何值時,
?并求出此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)設圓C:,此圓與拋物線
有四個不同的交點,若在
軸上方的兩交點分別為
,
,坐標原點為
,
的面積為
。
(1)求實數的取值范圍;
(2)求關于
的函數
的表達式及
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖,設點、
分別是橢圓
的左、右焦點,
為橢圓
上任意一點,且
最小值為
.
(1)求橢圓的方程;
(2)若動直線均與橢圓
相切,且
,試探究在
軸上是否存在定點
,點
到
的距離之積恒為1?若存在,請求出點
坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分為12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為.
(I)求橢圓方程;
(II)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線
在
軸上的截距為
,
交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個等腰三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com