(本題滿分為12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為.
(I)求橢圓方程;
(II)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
科目:高中數學 來源: 題型:解答題
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為.
(1)求橢圓方程;
(2)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點為
軸上的動點,點
為
軸上的動點,點
為定點,且滿足
,
.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)過點且斜率為
的直線
與曲線
交于兩點
,
,試判斷在
軸上是否存在點
,使得
成立,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓:
的右焦點為F,離心率
,橢圓C上的點到F的距離的最大值為
,直線l過點F與橢圓C交于不同的兩點A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的右焦點
,且
,設短軸的一個端點為
,原點
到直線
的距離為
,過原點和
軸不重合的直線與橢圓
相交于
兩點,且
.
(1)求橢圓的方程;
(2)是否存在過點的直線
與橢圓
相交于不同的兩點
,且使得
成立?若存在,試求出直線
的方程;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)如圖,橢圓C方程為 (
),點
為橢圓C的左、右頂點。
(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標準方程;
(2)若直線與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足
,求證:直線
過定點,并求出該點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=
,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C1:,拋物線C2:
,且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥軸時,求
、
的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)是否存在、
的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的
、
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
設雙曲線的方程為
,
、
為其左、右兩個頂點,
是雙曲線
上的任意一點,作
,
,垂足分別為
、
,
與
交于點
.
(1)求點的軌跡
方程;
(2)設、
的離心率分別為
、
,當
時,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com