【題目】若函數f(x)= 為奇函數,則a= , f(g(﹣2))= .
【答案】0;﹣25
【解析】解:由題意,a=f(0)=0.
設x<0,則﹣x>0,f(﹣x)=x2﹣2x+1=﹣f(x),
∴g(2x)=﹣x2+2x﹣1,
∴g(﹣2)=﹣4,
∴f(g(﹣2))=f(﹣4)=﹣16﹣8﹣1=﹣25.
所以答案是:0,﹣25.
【考點精析】解答此題的關鍵在于理解函數奇偶性的性質的相關知識,掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇,以及對函數的值的理解,了解函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數據:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數據中任意抽取兩組,求至少有一組數據其預測值與實際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.
(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點,求證:GH∥平面ABC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣ax﹣4(a∈R)的兩個零點為x1 , x2 , 設x1<x2 .
(1)當a>0時,證明:﹣2<x1<0;
(2)若函數g(x)=x2﹣|f(x)|在區間(﹣∞,﹣2)和(2,+∞)上均單調遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣1.
(1)對于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求實數m的取值范圍;
(2)若對任意實數x1∈[1,2].存在實數x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(1)求證:平面ABCD⊥平面ADE;
(2)設點F是棱BC上一點,若二面角A﹣DE﹣F的余弦值為 ,試確定點F在BC上的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 且λSn=λ﹣an , 其中λ≠0且λ≠﹣1.
(1)證明:{an}是等比數列,并求其通項公式;
(2)若 ,求λ.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com