精英家教網 > 高中數學 > 題目詳情
已知,其中是常數.
(1))當時, 是奇函數;
(2)當時,的圖像上不存在兩點、,使得直線平行于軸.
證明見解析.

試題分析:(1)奇函數的問題,可以根據奇函數的定義,利用來解決,當然如果你代數式變形的能力較強,可以直接求然后化簡變形為,從而獲得證明;(2)要證明函數的圖像上不存在兩點A、B,使得直線AB平行于軸,即方程不可能有兩個或以上的解,最多只有一個解,,,因此原方程最多只有一解,或者用反證法證明,設存在,即有兩個,且,使,然后推理得到矛盾的結論,從而完成證明.
試題解析:(1)由題意,函數定義域,              1分
對定義域任意,有:
   4分
所以,即是奇函數.                 6分
(2)假設存在不同的兩點,使得平行軸,則
                          9分
 
化簡得:,即,與不同矛盾。          13分
的圖像上不存在兩點,使得所連的直線與軸平行            14分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知冪函數)在是單調減函數,且為偶函數.
(1)求的解析式;
(2)討論的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知定義在R上的奇函數f(x)和偶函數g(x)滿足f(x)+g(x)=ax-a-x+2(a>0且a≠1),若g(2)=a,則f(2)等于(  )
A.2B.
C.D.a2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設f(x)是定義在R上的周期為3的周期函數,如圖表示該函數在區間(-2,1]上的圖像,則f(2 014)+f(2 015)=(  )
A.3 B.2
C.1 D.0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是定義在上的奇函數,滿足,當時,,則函數在區間上的零點個數是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)是定義在R上的奇函數,且當x>0時,f(x)=2x-3,則f(-2)=( ).
A.1B.-1C.D.-

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數上的偶函數,且對任意均有成立且,當時,有,給出四個命題:
;
②函數的圖像關于對稱;
③函數上為增函數;
④方程上有4個實根.
其中所有正確命題的序號為        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數的定義域為R,的極大值點,以下結論一定正確的是(  )
A.B.的極小值點
C.的極小值點D.的極小值點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數y=sin22x是(  ).
A.周期為π的奇函數B.周期為π的偶函數
C.周期為的奇函數D.周期為的偶函數

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视