【題目】已知橢圓,將其左、右焦點和短軸的兩個端點順次連接得到一個面積為
的正方形.
(1)求橢圓的方程;
(2)直線與橢圓
交于
、
兩點(均不在
軸上),點
,若直線
、
、
的斜率成等比數列,且
的面積為
(
為坐標原點),求直線
的方程.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線的普通方程和曲線
的直角坐標方程;
(2)已知點是曲線
上的動點,求點
到曲線
的最小距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】劉徽(約公元225年—295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一.他在割圓術中提出的“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”.這可視為中國古代極限觀念的佳作.割圓術的核心思想是將一個圓的內接正邊形等分成
個等腰三角形(如圖所示),當
變得很大時,這
個等腰三角形的面積之和近似等于圓的面積.運用割圓術的思想,估計
的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】著名物理學家李政道說:“科學和藝術是不可分割的”.音樂中使用的樂音在高度上不是任意定的,它們是按照嚴格的數學方法確定的.我國明代的數學家、音樂理論家朱載填創立了十二平均律是第一個利用數學使音律公式化的人.十二平均律的生律法是精確規定八度的比例,把八度分成13個半音,使相鄰兩個半音之間的頻率比是常數,如下表所示,其中表示這些半音的頻率,它們滿足
.若某一半音與
的頻率之比為
,則該半音為( )
頻率 | |||||||||||||
半音 | C | D | E | F | G | A | B | C(八度) |
A.B.GC.
D.A
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】音樂是用聲音來表達人的思想感情的一種藝術,明代的律學家朱載堉創建了十二平均律,并把十二平均律計算得十分精確,與當今的十二平均律完全相同,其方法是將一個八度音程(即相鄰的兩個具有相同名稱的音之間,如圖中88鍵標準鋼琴鍵盤的一部分中,c到c1便是一個八度音程)均分為十二等分的音律,如果用正式的音樂術語稱呼原來的7個音符,分別是c,d,e,f,g,a,b,則多出來的5個音符為c#(讀做“升c”),d#,f#,g#,a#;12音階為:c,c#,d,d#,e,f,f#,g,g#,a,a#,b,相鄰音階的頻率之比為1:.如圖,則鍵盤c和d的頻率之比為
即1:
,鍵盤e和f的頻率之比為1:
,鍵盤c和c1的頻率之比為1:2,由此可知,圖中的鍵盤b1和f2的頻率之比為( )
A.B.1:
C.
:1D.
:1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數g(x)=sinωx(ω>0)向左平移個單位長度得到函數f(x),已知f(x)在[0,2π]上有且只有5個零點,則下列結論正確的是( )
A.f(x)的圖象關于直線對稱
B.f(x)在(0,2π)上有且只有3個極大值點,f(x)在(0,2π)上有且只有2個極小值點
C.f(x)在上單調遞增
D.ω的取值范圍是[)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為
,直線
的參數方程為
(t為參數),
,點A為直線
與曲線C在第二象限的交點,過O點的直線
與直線
互相垂直,點B為直線
與曲線C在第三象限的交點.
(1)寫出曲線C的直角坐標方程及直線的普通方程;
(2)若,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】金剛石是碳原子的一種結構晶體,屬于面心立方晶胞(晶胞是構成晶體的最基本的幾何單元),即碳原子處在立方體的個頂點,
個面的中心,此外在立方體的對角線的
處也有
個碳原子,如圖所示(綠色球),碳原子都以共價鍵結合,原子排列的基本規律是每一個碳原子的周圍都有
個按照正四面體分布的碳原子.設金剛石晶胞的棱長為
,則正四面體
的棱長為__________;正四面體
的外接球的體積是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com