【題目】已知函數.
(1)求曲線在點
處的切線方程;
(2)求函數的極值;
(3)判斷在
上的單調性,并加以說明.
【答案】(1).(2)見解析;(3)見解析
【解析】試題分析 :(1)由題意可知,,
,求出切點和斜率,由點斜式可求切線方程。(2)
,
,定義域
導數等于0的根為1,據此可求出極值。(3)由(1)(2)可知
,
均滿足在
上單調遞增,所以如果有統計單調性的話,一定是單調遞增,所以要證對
恒成立。而
在
上遞增,
>0恒成立,即證。
試題解析:(1)∵,∴
,∴
,∵
,
∴曲線在點
處得切線方程為
,即
.
(2)∵,∴
,
令,得
;令
,得
且
.
∴在
上遞增,在
和
上遞減.
故在
處取得極小值,且極小值為
,
無極大值.
(3)在
上遞增.
證明如下:
要證在
上遞增,
只要證對
恒成立,
即證對
恒成立.
∵在
上遞增,∴
.
故要證對
恒成立,
只要證對
恒成立,
即證對
恒成立,即證
對
恒成立,
∵,∴
,∴
對
恒成立,
故在
上遞增.
科目:高中數學 來源: 題型:
【題目】某中學從參加高一年級上學期期末考試的學生中抽出60名學生,將其成績(均為整數)分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)估計這次考試的及格率(60分及以上為及格).
(2)從成績是70分以上(包括70分)的學生中選一人,求選到第一名學生的概率(第一名學生只一人).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇圓滿落幕了,相關話題在網絡上引起了網友們的高度關注,為此,21財經APP聯合UC推出“一帶一路”大數據微報告,在全國抽取的70千萬網民中(其中為高學歷)有20千萬人對此關注(其中
為高學歷).
(1)根據以上統計數據填下面列聯表;
(2)根據列聯表,用獨立性檢驗的方法分析,能否有的把握認為“一帶一路”的關注度與學歷有關系?
高學歷(千萬人) | 不是高學歷(千萬人) | 合計 | |
關注 | |||
不關注 | |||
合計 |
參考公式: 統計量的表達式是
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】4月16日摩拜單車進駐大連市旅順口區,綠色出行引領時尚,旅順口區對市民進行“經常使用共享單車與年齡關系”的調查統計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內使用的次數為6次或6次以上的稱為“經常使用單車用戶”。使用次數為5次或不足5次的稱為“不常使用單車用戶”,已知“經常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有
是“年輕人”.
(1)請你根據已知的數據,填寫下列列聯表:
年輕人 | 非年輕人 | 合計 | |
經常使用單車用戶 | |||
不常使用單車用戶 | |||
合計 |
(2)請根據(1)中的列聯表,計算值并判斷能否有
的把握認為經常使用共享單車與年齡有關?
(附:
當時,有
的把握說事件
與
有關;當
時,有
的把握說事件
與
有關;當
時,認為事件
與
是無關的)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了,
,
,
四件獎品(每扇門里僅放一件).甲同學說:1號門里是
,3號門里是
;乙同學說:2號門里是
,3號門里是
;丙同學說:4號門里是
,2號門里是
;丁同學說:4號門里是
,3號門里是
.如果他們每人都猜對了一半,那么4號門里是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某教師有相同的語文參考書3本,相同的數學參考書4本,從中取出4本贈送給4位學生,每位學生1本,則不同的贈送方法共有( )
A. 15種 B. 20種 C. 48種 D. 60種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為
,甲投籃3次均未命中的概率為
,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設兩人命中的總次數為,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (
為實常數).
(1)若,
,求
的單調區間;
(2)若,且
,求函數
在
上的最小值及相應的
值;
(3)設,若存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com