試題分析:(Ⅰ)依題意設出A、B、C、D四點的坐標,注意到AC的斜率為0,只需證AB、AD的斜率之和為0即可;(Ⅱ)四邊形ABCD可以AC為底分成兩個三角形求出面積,解出得到的方程即可.
試題解析:(Ⅰ)設A(x
0,

),B(x
1,

),C(-x
0,

),D(x
2,

).
對y=x
2求導,得y¢=2x,則拋物線在點C處的切線斜率為-2x
0.
直線BD的斜率k=

=x
1+x
2,
依題意,有x
1+x
2=-2x
0.
記直線AB,AD的斜率分別為k
1,k
2,與BD的斜率求法同理,得
k
1+k
2=(x
0+x
1)+(x
0+x
2)=2x
0+(x
1+x
2)=0,
所以∠CAB=∠CAD,即AC平分∠BAD.
(Ⅱ)由題設,x
0=-1,x
1+x
2=2,k=2.四邊形ABCD的面積
S=

|AC|·

=

|AC|·|x
2+x
1|·|x
2-x
1|
=

×2×2×|2-2x
1|=4|1-x
1|,
由已知,4|1-x
1|=4,得x
1=0,或x
1=2.
所以點B和D的坐標為(0,0)和(2,4),
故直線BD的方程為y=2x.
