【題目】央視傳媒為了解央視舉辦的“朗讀者”節目的收視時間情況,隨機抽取了某市名觀眾進行調查,其中有
名男觀眾和
名女觀眾,將這
名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在
分鐘以上(包括
分鐘)的稱為“朗讀愛好者”,收視時間在
分鐘以下(不包括
分鐘)的稱為“非朗讀愛好者”.規定只有女“朗讀愛好者”可以參加央視競選.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這
名觀眾中任選
名,求至少選到
名“朗讀愛好者”的概率;
(2)若從所有的“朗讀愛好者”中隨機抽取名,求抽到的
名觀眾中能參加央視競選的人數
的分布列及其數學期望
.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
過點
,其參數方程為
(
為參數,
),以
為極點,
軸非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)求已知曲線和曲線
交于
,
兩點,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以短軸端點和焦點為頂點的四邊形的周長為
.
(Ⅰ)求橢圓的標準方程及焦點坐標.
(Ⅱ)過橢圓的右焦點作
軸的垂線,交橢圓于
、
兩點,過橢圓上不同于點
、
的任意一點
,作直線
、
分別交
軸于
、
兩點.證明:點
、
的橫坐標之積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點.求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
圖象的相鄰兩條對稱軸之間的距離是
,其中一個最高點為
.
(1)求函數的解析式;
(2)求函數在
上的單調遞增區間;
(3)若對于任意的
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節目的收視時間情況,隨機抽取了某市名觀眾進行調查,其中有
名男觀眾和
名女觀眾,將這
名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在
分鐘以上(包括
分鐘)的稱為“朗讀愛好者”,收視時間在
分鐘以下(不包括
分鐘)的稱為“非朗讀愛好者”.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這
名觀眾中任選
名,求至少選到
名“朗讀愛好者”的概率;
(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今年4月的“西安奔馳女車主哭訴維權事件”引起了社會的廣泛關注,某汽車4S店為了調研公司的售后服務態度,對5月份到店維修保養的100位客戶進行了回訪調查,每位客戶用10分制對該店的售后服務進行打分.現將打分的情況分成以下幾組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.已知第二組的頻數為10.
(1)求圖中實數a,b的值;
(2)求所打分值在[6,10]的客戶人數;
(3)總公司規定,若4S店的客戶回訪平均得分低于7分,則將勒令其停業整頓.試用頻率分布直方圖的組中值對總體平均數進行估計,判斷該4S店是否需要停業整頓.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線 的焦點
的直線與拋物線在第一象限的交點為
,與拋物線準線的交點為
,點
在拋物線準線上的射影為
,若
的面積為
.
( 1 ) 求拋物線的標準方程;
( 2 ) 過焦點的直線與拋物線交于
兩點,拋物線在
點處的切線分別為
,且
與
相交于
點,
與
軸交于
點,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com