【題目】6把椅子排成一排,3人隨機就座,任何兩人不相鄰的坐法種數為( )
A.144
B.120
C.72
D.24
【答案】D
【解析】解:使用“插空法“.第一步,三個人先坐成一排,有 種,即全排,6種;第二步,由于三個人必須隔開,因此必須先在1號位置與2號位置之間擺放一張凳子,2號位置與3號位置之間擺放一張凳子,剩余一張凳子可以選擇三個人的左右共4個空擋,隨便擺放即可,即有
種辦法.根據分步計數原理,6×4=24.
故選:D.
使用“插空法“.第一步,三個人先坐成一排,有 種,即全排,6種;第二步,由于三個人必須隔開,因此必須先在1號位置與2號位置之間擺放一張凳子,2號位置與3號位置之間擺放一張凳子,剩余一張凳子可以選擇三個人的左右共4個空擋,隨便擺放即可,即有
種辦法.根據分步計數原理可得結論.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
:
,圓
:
(
,且
).
(1)設為坐標軸上的點,滿足:過點P分別作圓
與圓
的一條切線,切點分別為
、
,使得
,試求出所有滿足條件的點
的坐標;
(2)若斜率為正數的直線平分圓
,求證:直線
與圓
總相交.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當點A的橫坐標為3時,△ADF為正三角形.
(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(。┳C明直線AE過定點,并求出定點坐標;
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實數a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某單位職工的月收入情況畫出的樣本頻率分布直方圖,已知圖中第一組的頻數為4 000,請根據該圖提供的信息,解答下列問題.
(1)為了分析職工的收入與年齡、學歷等方面的關系,必須從樣本中按月收入用分層抽樣方法抽出100人作進一步分析,則月收入在[1 500,2 000)的這組中應抽取多少人?
(2)試估計樣本數據的中位數與平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 若對任意的正整數n,總存在正整數m,使得Sn=am , 則稱{an}是“H數列”.
(1)若數列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數列”;
(2)設{an}是等差數列,其首項a1=1,公差d<0,若{an}是“H數列”,求d的值;
(3)證明:對任意的等差數列{an},總存在兩個“H數列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com