【題目】設一組數據51,54,m,57,53的平均數是54,則這組數據的標準差等于 .
【答案】2
【解析】解:數據51,54,m,57,53的平均數是54,
即 ×(51+54+m+57+53)=54,
解得m=55,
所以這組數據的方差為
s2= ×[(51﹣54)2+(54﹣54)2+(55﹣54)2+(57﹣54)2+(53﹣54)2]=4,
標準差為s=2.
所以答案是:2.
【考點精析】解答此題的關鍵在于理解平均數、中位數、眾數的相關知識,掌握⑴平均數、眾數和中位數都是描述一組數據集中趨勢的量;⑵平均數、眾數和中位數都有單位;⑶平均數反映一組數據的平均水平,與這組數據中的每個數都有關系,所以最為重要,應用最廣;⑷中位數不受個別偏大或偏小數據的影響;⑸眾數與各組數據出現的頻數有關,不受個別數據的影響,有時是我們最為關心的數據.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱 中,底面
是邊長為2的等邊三角形,
為
的中點.
(1)求證: 平面
;
(2)若四邊形 是正方形,且
, 求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標標系xoy中,已知曲線 (α為參數,α∈R),在以原點O為極點,x軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線
=
,曲線C3:ρ=2cosθ. (Ⅰ)求曲線C1與C2的交點M的直角坐標;
(Ⅱ)設A,B分別為曲線C2 , C3上的動點,求|AB|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,F1、F2是雙曲線 =1(a>0)的左、右焦點,過F1的直線l與雙曲線交于點A、B,若△ABF2為等邊三角形,則△BF1F2的面積為( )
A.8
B.8
C.8
D.16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】和諧高級中學共有學生570名,各班級人數如表:
一班 | 二班 | 三班 | 四班 | |
高一 | 52 | 51 | y | 48 |
高二 | 48 | x | 49 | 47 |
高三 | 44 | 47 | 46 | 43 |
已知在全校學生中隨機抽取1名,抽到高二年級學生的概率是 .
(1)求x,y的值;
(2)現用分層抽樣的方法在全校抽取114名學生,應分別在各年級抽取多少名?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓 與圓
:
關于直線
對稱,且點
在圓
上.
(1)判斷圓 與圓
的公切線的條數;
(2)設 為圓
上任意一點,
,
,
三點不共線,
為
的平分線,且交
于
,求證:
與
的面積之比為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,動點M到點F(1,0)的距離與它到直線x=2的距離之比為 . (Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)設直線y=kx+m(m≠0)與曲線E交于A,B兩點,與x軸、y軸分別交于C,D兩點(且C,D在A,B之間或同時在A,B之外).問:是否存在定值k,對于滿足條件的任意實數m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F分別為PC,BD的中點.
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com