【題目】定義運算則函數f(x)=1*2x的最大值為
【答案】1
【解析】解:定義運算 ,
若x>0可得,2x>1,∴f(x)=1*2x=1;
若x≤0可得,2x≤1,∴g(x)=1*2x=2x ,
∴當x≤0時,2x≤1,
綜上f(x)≤1,∴函數f(x)=1*2x的最大值為1,
所以答案是1;
【考點精析】認真審題,首先需要了解函數的值域(求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的),還要掌握函數單調性的性質(函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,圓的極坐標方程為
.若以極點
為原點,極軸所在直線為
軸建立平面直角坐標系.
(Ⅰ)求圓的參數方程;
(Ⅱ)在直角坐標系中,點是圓
上動點,試求
的最大值,并求出此時點
的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平行六面體ABCD﹣A1B1C1D1中,側棱B1B長為3,底面是邊長為2的菱形,∠A1AB=120°,∠A1AD=60°,點E在棱B1B上,則AE+C1E的最小值為( 。
A.
B.5
C.2
D.7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關于行駛速度x(千米/小時)的函數解析式可以表示為:y=(0<x≤120).已知甲、乙兩地相距100千米.
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若函數在
處的切線平行于直線
,求實數a的值;
(Ⅱ)判斷函數在區間
上零點的個數;
(Ⅲ)在(Ⅰ)的條件下,若在上存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,要設計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2 , 四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm.
(1)設矩形欄目寬度為xcm,求矩形廣告面積S(x)的表達式
(2)怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最小?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐的側棱底面
,且底面
是直角梯形,
,
,
,點
在側棱上.
(1)求證:平面
;
(2)若側棱與底面
所成角的正切值為
,點
為側棱
的中點,求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com