【題目】設函數f(x)= (a>0且a≠1)是定義域為R的奇函數.
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx﹣x2)+f(x﹣1)<0對一切x∈R恒成立的實數k的取值范圍;
(3)若函數f(x)的圖象過點(1, ),是否存在正數m,且m≠1使函數g(x)=logm[a2x+a﹣2x﹣mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值,若不存在,請說明理由.
【答案】
(1)解:f(x)是定義域為R的奇函數
∴f(0)=0,
∴t=2
(2)解:由(1)得f(x)=ax﹣a﹣x,
∵f(1)>0得 又a>0
∴a>1,
由f(kx﹣x2)+f(x﹣1)<0得f(kx﹣x2)<﹣f(x﹣1),
∵f(x)為奇函數,
∴f(kx﹣x2)<f(1﹣x),
∵a>1∴f(x)=ax﹣a﹣x為R上的增函數,
∴kx﹣x2<1﹣x對一切x∈R恒成立,即x2﹣(k+1)x+1>0對一切x∈R恒成立
故△=(k+1)2﹣4<0解得﹣3<k<1
(3)解:函數f(x)的圖象過點(1, ),
∴a=2,假設存在正數m,且m≠1符合題意,由a=2得 =
=
設t=2x﹣2﹣x則(2x﹣2﹣x)2﹣m(2x﹣2﹣x)+2=t2﹣mt+2,
∵x∈[1,log23],
∴ 記h(t)=t2﹣mt+2,
∵函數 在[1,log23]上的最大值為0,
∴(。┤0<m<1時,則函數h(t)=t2﹣mt+2在 有最小值為1
由于對稱軸 ∴
,不合題意
(ⅱ)若m>1時,則函數h(t)=t2﹣mt+2>0在 上恒成立,且最大值為1,最小值大于0
①
又此時 ,
故g(x)在[1,log23]無意義
所以
② 無解,
綜上所述:故不存在正數m,使函數 在[1,log23]上的最大值為0
【解析】(1)由奇函數的性質可知f(0)=0,得出t=2;(2)由f(1)>0得 又a>0,求出a>1,判斷函數的單調性f(x)=ax﹣a﹣x為R上的增函數,不等式整理為x2﹣(k+1)x+1>0對一切x∈R恒成立,利用判別式法求解即可;(3)把點代入求出a=2,假設存在正數m,構造函數設t=2x﹣2﹣x則(2x﹣2﹣x)2﹣m(2x﹣2﹣x)+2=t2﹣mt+2,對底數m進行分類討論,判斷m的值.
科目:高中數學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40m的半圓形(以O為圓心,AB為直徑)綠化區域,現計劃對其進行改建.在AB的延長線上取點D,使OD=80m,在半圓上選定一點C,改建后的綠化區域由扇形區域AOC和三角形區域COD組成,其面積為S m2. 設∠AOC=x rad.
(1)寫出S關于x的函數關系式S(x),并指出x的取值范圍;
(2)張強同學說:當∠AOC=時,改建后的綠化區域面積S最大.張強同學的說法正確嗎?若不正確,請求出改建后的綠化區域面積S最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期為2 π,最小值為﹣2,且當x=
時,函數取得最大值4. (I)求函數 f(x)的解析式;
(Ⅱ)求函數f(x)的單調遞增區間;
(Ⅲ)若當x∈[ ,
]時,方程f(x)=m+1有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,△ABC中,已知頂點A(3,﹣1),∠B的內角平分線方程是x﹣4y+10=0過點C的中線方程為6x+10y﹣59=0.求頂點B的坐標和直線BC的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠ABC= ,PA⊥底面ABCD,PA=AB=2,M為PA的中點,N為BC的中點
(1)證明:直線MN∥平面PCD;
(2)求異面直線AB與MD所成角的余弦值;
(3)求點B到平面PCD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“a≥3 ”是“直線l:2ax﹣y+2a2=0(a>0)與雙曲線C:
﹣
=1的右支無交點”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}滿足an+1+an=4n﹣3(n∈N*)
(Ⅰ)若{an}是等差數列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的一條對稱軸為
,且最高點的縱坐標是
.
(1)求的最小值及此時函數
的最小正周期、初相;
(2)在(1)的情況下,設,求函數
在
上的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com