【題目】“a≥3 ”是“直線l:2ax﹣y+2a2=0(a>0)與雙曲線C:
﹣
=1的右支無交點”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
:
和圓
:
.
(1)若直線過點
,且被圓
截得的弦長為
,求直線
的方程;
(2)設為平面直角坐標系上的點,滿足:存在過點
的無窮多對相互垂直的直線
和
,它們分別與圓
和
相交,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,試求所有滿足條件的點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若曲線 在
和
處的切線互相平行,求
的值;
(2)求 的單調區間;
(3)設 ,若對任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= (a>0且a≠1)是定義域為R的奇函數.
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx﹣x2)+f(x﹣1)<0對一切x∈R恒成立的實數k的取值范圍;
(3)若函數f(x)的圖象過點(1, ),是否存在正數m,且m≠1使函數g(x)=logm[a2x+a﹣2x﹣mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題: 1)y=|cos(2x+ )|最小正周期為π;
2)函數y=tan 的圖象的對稱中心是(kπ,0),k∈Z;
3)f(x)=tanx﹣sinx在(﹣ ,
)上有3個零點;
4)若 ∥
,
,則
其中錯誤的是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(x2﹣bx)(b∈R)在區間[ ,2]上存在單調遞增區間,則實數b的取值范圍是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣ ,
)
D.( ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x3﹣x2+x.
(1)求函數f(x)在[﹣1,2]上的最大值和最小值;
(2)若函數g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知R上的奇函數f(x)和偶函數g(x)滿足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,則f(2)的值為(
A.
B.2
C.
D.a2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com