【題目】已知函數(k為常數,
且
).
(1)在下列條件中選擇一個________使數列是等比數列,說明理由;
①數列是首項為2,公比為2的等比數列;
②數列是首項為4,公差為2的等差數列;
③數列是首項為2,公差為2的等差數列的前n項和構成的數列.
(2)在(1)的條件下,當時,設
,求數列
的前n項和
.
科目:高中數學 來源: 題型:
【題目】坐標系與參數方程:在平面直角坐標系中,以原點為極點,
軸的非負半軸為極軸建立極坐標系,已知點
的極坐標為
,直線
的極坐標方程為
,且點
在直線
上
(Ⅰ)求的值和直線
的直角坐標方程及
的參數方程;
(Ⅱ)已知曲線的參數方程為
,(
為參數),直線
與
交于
兩點,求
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了宣傳今年10月在某市舉行的“第十屆中國藝術節”,“十藝節”籌委會舉辦了“十藝節”知識有獎問答活動,隨機對市民15~65歲的人群抽樣人,回答問題統計結果如下圖表所示:
組號 | 分組 | 回答正確的人數 | 回答正確的人數占本組的頻率 | 頻率分布直方圖 |
第1組 | 5 | 0.5 | ||
第2組 | 0.9 | |||
第3組 | 27 | |||
第4組 | 9 | 0.36 | ||
第5組 | 3 | 0.2 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,“十藝節”籌委會決定在所抽取的6人中隨機抽取2人頒發幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左、右焦點分別為
,焦距為
,過點
作直線交橢圓
于
兩點,
的周長為
.
(1)求橢圓的方程;
(2)若斜率為的直線
與橢圓相交于
兩點,求定點
與交點
所構成的三角形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,若,
,且
.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)設(Ⅰ)中曲線的左、右頂點分別為
、
,過點
的直線
與曲線
交于兩點
,
(不與
,
重合).若直線
與直線
相交于點
,試判斷點
,
,
是否共線,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線
的頂點在原點,且該拋物線經過點
,其焦點
在
軸上.
(Ⅰ)求過點且與直線
垂直的直線的方程;
(Ⅱ)設過點的直線交拋物線
于
,
兩點,
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視臺舉行一個比賽類型的娛樂節目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數據,繪制成莖葉圖如圖所示,為了增加節目的趣味性,主持人故意將
隊第六位選手的成績沒有給出,并且告知大家
隊的平均分比
隊的平均分多4分,同時規定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)根據莖葉圖中的數據,求出隊第六位選手的成績;
(2)主持人從隊所有選手成績中隨機抽2個,求至少有一個為“晉級”的概率;
(3)主持人從兩隊所有選手成績分別隨機抽取2個,記抽取到“晉級”選手的總人數為
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),以
為極點,以
軸的正半軸為極軸,建立極坐標系,直線
的極坐標方程為
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)設點,若直線
與曲線
相交于
,
兩點,且
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com