【題目】已知實數x,y滿足,則
的取值范圍是__________.
【答案】
【解析】
變形可得(x﹣2)2+y2=1,所求式子表示圓上的點M(x,y)與定點A(1,﹣3)連線的斜率k加上1,利用直線和圓相切的性質求得k的范圍,可得結論.
解:∵實數x,y滿足x2﹣4x+3+y2=0,即(x﹣2)2+y2=1,表示以C(2,0)為圓心,半徑等于1的圓.
則1
,表示圓上的點M(x,y)與定點A(1,﹣3)連線的斜率k加上1,如圖.
當切線位于AB這個位置時,k最小,k+1最。
當切線位于AE這個位置時,k不存在,k+1不存在.
設AB的方程為y+3=k(x﹣1),即 kx﹣y﹣k﹣3=0,由CB=1,可得1,求得k
.
而AE的方程為x=1,
故k+1的范圍為[,+∞),
故答案為:[,+∞).
科目:高中數學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業甲將經營狀況良好的某種消費品專賣店以5.8萬元的優惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業乙,并約定從該店經營的利潤中,首先保證企業乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓 (a>b>0)的左、右焦點分別為F1 , F2 , 點D在橢圓上.DF1⊥F1F2 ,
=2
,△DF1F2的面積為
.
(1)求橢圓的標準方程;
(2)設圓心在y軸上的圓與橢圓在x軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com