精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐中,平面,平面,,.

(1)求棱錐的體積;

(2)求證:平面平面;

(3)在線段上是否存在一點,使平面?若存在,求出的值;若不存在,說明理由.

【答案】1;

2)見試題解析;

3)在線段上存在一點,且,使平面。

【解析】

試題(I)在在中,,可得,由于平面,可的棱錐的高,利用體積公式求解幾何體的體積;(II)由平面,可得,進而得到平面,即可證明平面 平面;(III)在線段上存在一點,使得平面,設F為線段DE上的一點,且,過F,由線面垂直的性質可得,可得四邊形ABMF是平行四邊形,于是,即可證明平面

試題解析:()在中,

因為平面,

所以棱錐的體積為

)證明:因為平面平面,

所以.又因為,

所以平面.又因為平面

所以平面 平面

)結論:在線段上存在一點,且

使平面

解:設為線段上一點, 且, 過點,

.因為平面,平面,所以

又因為所以,,所以四邊形是平行四邊形,

.又因為平面,平面,所以平面

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了打好脫貧攻堅戰,某貧困縣農科院針對玉米種植情況進行調研,力爭有效的改良玉米品種,為農民提供技術支.現對已選出的一組玉米的莖高進行統計,獲得莖葉圖如右圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)完成列聯表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?

2①按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽取9株玉米,設取出的易倒伏矮莖玉米株數為,求的分布列(概率用組合數算式表示);

②若將頻率視為概率,從抗倒伏的玉米試驗田中再隨機抽取出50株,求取出的高莖玉米株數的數學期望和方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修:坐標系與參數方程

在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系.曲線的極坐標方程為

(1)寫出的普通方程和的直角坐標方程;

(2)設點上,點上,求的最小值及此時點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場在五一促銷活動中,為了了解消費額在5千元以下(含5千元)的顧客的消費分布情況,從這些顧客中隨機抽取了100位顧客的消費數據(單位:千元),按,,,分成5組,制成了如圖所示的頻率分布直方圖現采用分層抽樣的方法從兩組顧客中抽取4人進行滿意度調查,再從這4人中隨機抽取2人作為幸運顧客,求所抽取的2位幸運顧客都來自組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,。

(Ⅰ)若 ,求的值;

(Ⅱ)討論函數的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,其中.

(1)當時,求函數單調遞增區間;

(2)求證:對任意,函數的圖象在點處的切線恒過定點;

(3)是否存在實數的值,使得上有最大值或最小值,若存在,求出實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】實驗杯足球賽采用七人制淘汰賽規則,某場比賽中一班與二班在常規時間內戰平,直接進入點球決勝環節,在點球決勝環節中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學無需出場).由于一班同學平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學沒能出場罰球”,求事件發生的概率;

(2)若兩隊在前三輪點球結束后打平,則進入一對一點球決勝,一對一球決勝由沒有在之前點球大戰中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽. 若直至雙方場上每名隊員都已經出場罰球,則比賽亦結束,雙方通過抽簽決定勝負,本場比賽中若已知雙方在點球大戰,以隨機變量記錄雙方進行一對一點球決勝的輪數,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 的導函數.

Ⅰ)求的極值;

Ⅱ)若時恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4—4:坐標系與參數方程]

在平面直角坐標系中,曲線的參數方程為為參數,),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,直線的極坐標方程為.

(1)設是曲線上的一個動瞇,當時,求點到直線的距離的最小值;

(2)若曲線上所有的點都在直線的右下方,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视