精英家教網 > 高中數學 > 題目詳情

【題目】已知函數為常數是自然對數的底數,曲線在點處的切線與軸平行

1的值

2的單調區間;

3其中的導函數證明:對任意,

【答案】12單調遞增區間是,單調遞減區間是3證明見解析

【解析】

試題分析:1求導可得 ;21知,,再利用導數工具進行求解;32可知,當,,故只需證明時成立,再利用導數工具進行證明

試題解析:1,由已知,

21知,

,,上是減函數

,,從而,

,從而

綜上可知,的單調遞增區間是,單調遞減區間是

32可知,當,,

故只需證明時成立

,

,, ,

,,

所以當,取得最大值

所以

綜上,對任意,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數為常數)的圖象在處的切線方程為.

(1)判斷函數的單調性;

(2)已知,且,若對任意,任意, 中恰有一個恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數f(x),f(0)≠0,f(1)=2,當x>0,f(x)>1,且對任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求證:對任意x∈R,都有f(x)>0;
(2)判斷f(x)在R上的單調性,并用定義證明;
(3)求不等式f(3﹣2x)>4的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數據繪制成頻率分布直方圖(如圖).若要從身高在[ 120 , 130),[130 ,140) , [140 , 150]三組內的學生中,用分層抽樣的方法選取18人參加一項活動,則從身高在[140 ,150]內的學生中選取的人數應為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|1<x≤5},集合B={ >0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=a﹣ (a∈R)
(1)判斷函數f(x)的單調性并給出證明;
(2)若函數f(x)是奇函數,則f(x)≥ 當x∈[1,2]時恒成立,求m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, )為奇函數,且相鄰兩對稱軸間的距離為.

(1)當時,求的單調遞減區間;

(2)將函數的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數的圖象.當時,求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著生活水平的提高,人們對空氣質量的要求越來越高,某機構為了解公眾對“車輛限行”的態度,隨機抽查了50人,并將調查情況進行整理后制成下表:

(1)規定:年齡在內的為青年人,年齡在內的為中年人,根據以上統計數據填寫下面列聯表:

(2)能否在犯錯誤的概率不超過0.025的前提下,認為贊成“車輛限行”與年齡有關?

參考公式和數據: ,其中.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數存在兩個極值點.

(Ⅰ)求實數a的取值范圍;

(Ⅱ)設分別是的兩個極值點且,證明:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视