【題目】如圖所示,在正方體中,側面對角線
,
上分別有一點E,F,且
,則直線EF與平面ABCD所成的角的大小為( )
A.0°B.60°C.45°D.30°
科目:高中數學 來源: 題型:
【題目】某校研究性學習小組從汽車市場上隨機抽取輛純電動汽車調查其續駛里程(單次充電后能行駛的最大里程),被調查汽車的續駛里程全部介于
公里和
公里之間,將統計結果分成
組:
,
,
,
,
,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求續駛里程在的車輛數;
(3)若從續駛里程在的車輛中隨機抽取
輛車,求其中恰有一輛車的續駛里程在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年電子商務蓬勃發展,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統.從該評價系統中選出200次成功交易,并對其評價進行統計,網購者對商品的滿意率為0.70,對快遞的滿意率為0.60,商品和快遞都滿意的交易為80
(Ⅰ)根據已知條件完成下面的列聯表,并回答能否有99%認為“網購者對商品滿意與對快遞滿意之間有關系”?
對快遞滿意 | 對快遞不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | |||
合計 | 200 |
(Ⅱ)若將頻率視為概率,某人在該網購平臺上進行的3次購物中,設對商品和快遞都滿意的次數為隨機變量,求
的分布列和數學期望
.
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(2x+φ),其中φ為實數,若f(x)≤|f( )|對x∈R恒成立,且f(
)>f(π),則f(x)的單調遞增區間是( )
A.[kπ﹣ ,kπ+
](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+
](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點M在線段EF上運動,設平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某銷售公司擬招聘一名產品推銷員,有如下兩種工資方案:
方案一:每月底薪2000元,每銷售一件產品提成15元;
方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.
(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產品件數
的函數關系式;
(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統計,得到如下統計表:
月銷售產品件數 | 300 | 400 | 500 | 600 | 700 |
次數 | 2 | 4 | 9 | 5 | 4 |
把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務進行賬務支付的一種服務方式.繼卡類支付、網絡支付后,手機支付儼然成為新寵.某金融機構為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調查,調查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.
組數 | 第l組 | 第2組 | 第3組 | 第4組 | 第5組 |
分組 | |||||
頻數 | 20 | 36 | 30 | 10 | 4 |
(1)求;
(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數:
(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com