【題目】在四棱錐中,底面
為平行四邊形,
,
,
,
.
(Ⅰ)證明: 平面
;
(Ⅱ)求點到平面
的距離.
【答案】(1)詳見解析;(2)
【解析】試題分析:(Ⅰ)首先利用正弦定理求得,由此可推出
,然后利用勾股定理推出
,從而使問題得證;(Ⅱ)利用等積法將問題轉化為
求解即可.
試題解析:(Ⅰ)證明:在中,
,由已知
,
,
,
解得,所以
,即
,可求得
.
在中,
∵,
,
,
∴,∴
,
∵平面
,
,∴
平面
.
(Ⅱ)由題意可知, 平面
,則
到面
的距離等于
到面
的距離,
在中,易求
,
,
且,
面
,
則,即
,則
,
即點到平面
的距離為
.
點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型,(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點在
軸上,且橢圓
的焦距為2.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線
與橢圓
交于兩點
,過
作
軸且與橢圓
交于另一點
,
為橢圓
的右焦點,求證:三點
在同一條直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(Ⅰ)寫出直線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設曲線經過伸縮變換
得到曲線
,若點
,直線
與
交與
,
,求
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人為了響應政府“節能減排”的號召,決定各購置一輛純電動汽車.經了解目前市場上銷售的主流純電動汽車,按續駛里程數(單位:公里)可分為三類車型,
,
.甲從
三類車型中挑選,乙從
兩類車型中挑選,甲、乙兩人選擇各類車型的概率如表:
已知甲、乙都選類型的概率為
.
(1)求的值;
(2)求甲、乙選擇不同車型的概率;
(3)某市對購買純電動汽車進行補貼,補貼標準如下表:
記甲、乙兩人購車所獲得的財政補貼之和為,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體的棱長為1,
,
分別是棱
,
的中點,過直線
的平面分別與棱
,
交于
,
,設
,
,給出以下命題:
①四邊形為平行四邊形;
②若四邊形面積
,
,則
有最小值;
③若四棱錐的體積
,
,則
為常函數;
④若多面體的體積
,
,則
為單調函數.
⑤當時,四邊形
為正方形.
其中假命題的個數為( )
A. 0 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上周某校高三年級學生參加了數學測試,年部組織任課教師對這次考試進行成績分析.現從中隨機選取了40名學生的成績作為樣本,已知這40名學生的成績全部在40分至100分之間(滿分100分,成績不低于40分),現將成績按如下方式分成6組:第一組;第二組
;……;第六組
,并據此繪制了如圖所示的頻率分布直方圖.
(Ⅰ)估計這次月考數學成績的平均分和眾數;
(Ⅱ)從成績大于等于80分的學生中隨機選2名,求至少有1名學生的成績在區間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位實行休年假制度三年以來,50名職工休年假的次數進行的調查統計結果如下表所示:
休假次數 | 0 | 1 | 2 | 3 |
人數 | 5 | 10 | 20 | 15 |
根據表中信息解答以下問題:
(1)從該單位任選兩名職工,求這兩人休年假次數之和為4的概率;
(2)從該單位任選兩名職工,用表示這兩人休年假次數之差的絕對值,求隨機變量
的分布列及數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com