【題目】如圖,在平面直角坐標系中,橢圓
的焦距為2,且過點
.
(1)求橢圓的方程;
(2)若點分別是橢圓
的左右頂點,直線
經過點
且垂直與軸,點
是橢圓上異于
的任意一點,直線
交
于點
.
①設直線的斜率為
,直線
的斜率為
,求證:
為定值;
②設過點垂直于
的直線為
,求證:直線
過定點,并求出定點的坐標.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點,E為PA的中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求證:OE∥平面PDC;
(Ⅲ)求面PAD與面PBC所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40m的半圓形綠化區域(以O為圓心,AB為直徑),現對其進行改建,在AB的延長線上取點D,OD=80m,在半圓上選定一點C,改建后綠化區域由扇形區域AOC和三角形區域COD組成,其面積為Scm2 . 設∠AOC=xrad.
(1)寫出S關于x的函數關系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區域面積S取得最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某城市氣象部門的數據中,隨機抽取100天的空氣質量指數的監測數據如表:
空氣質量指數t | (0,50] | (50,100] | (100,150] | (150,200) | (200,300] | (300,+∞) |
質量等級 | 優 | 良 | 輕微污染 | 輕度污染 | 中度污染 | 嚴重污染 |
天數K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)若該城市各醫院每天收治上呼吸道病癥總人數y與當天的空氣質量(
取整數)存在如下關系
且當t>300時,y>500,估計在某一醫院收治此類病癥人數超過200人的概率;
(2)若在(1)中,當t>300時,y與t的關系擬合的曲線為,現已取出了10對樣本數據(ti,yi)(i=1,2,3,…,10),且知
試用可線性化的回歸方法,求擬合曲線的表達式.(附:線性回歸方程
中,
,
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
設農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程=bx+a;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:=
=
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,函數
,若
的圖象上相鄰兩條對稱軸的距離為
,圖象過點
.
(1)求表達式和
的單調增區間;
(2)將函數的圖象向右平移
個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數
的圖象,若函數
在區間
上有且只有一個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】程大位是明代著名數學家,他的《新編直指算法統宗》是中國歷史上一部影響巨大的著作,它問世后不久便風行宇內,成為明清之際研習數學者必讀的教材,而且傳到朝鮮、日本及東南亞地區,對推動漢字文化圈的數學發展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖,執行該程序框圖,求得該垛果子的總數為( )
A. 120 B. 84 C. 56 D. 28
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)= sin(2x﹣
)+1的圖象向左平移
個單位長度,再向下平移1個單位長度,得到函數g(x)的圖象,則函數g(x)具有性質 . (填入所有正確性質的序號)
①最大值為 ,圖象關于直線x=
對稱;
②在(﹣ ,0)上單調遞增,且為偶函數;
③最小正周期為π.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com