【題目】已知橢圓:
的一個焦點與
的焦點重合,點
在橢圓
上.
(1)求橢圓的方程;
(2)設直線:
(
)與橢圓
交于
兩點,且以
為對角線的菱形的一頂點為
,求
面積的最大值(
為坐標原點).
科目:高中數學 來源: 題型:
【題目】我市某機構為調查2017年下半年落實中學生“陽光體育”活動的情況,設平均每人每天參加體育鍛煉時間為(單位:分鐘),按鍛煉時間分下列四種情況統計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學生參加了此項活動,圖1是此次調查中某一項的流程圖,其輸出的結果是6400,則平均每天參加體育鍛煉時間在0~20分鐘內的學生的頻率是( )
圖1
A. 0.64 B. 0.36 C. 6400 D. 3600
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,Sn是數列{an}的前n項和,且4Sn=an2+2an﹣3.
(1)求數列{an}的通項公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4 坐標系與參數方程
在直角坐標系中,圓
,曲線
的參數方程為
為參數),并以
為極點,
軸正半軸為極軸建立極坐標系.
(1)寫出的極坐標方程,并將
化為普通方程;
(2)若直線的極坐標方程為
與
相交于
兩點,
求的面積(
為圓
的圓心).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,ABC為一直角三角形草坪,其中∠C=90°,BC=2米,AB=4米,為了重建草坪,設計師準備了兩套方案:
方案一:擴大為一個直角三角形,其中斜邊DE過點B,且與AC平行,DF過點A,EF過點C;
方案二:擴大為一個等邊三角形,其中DE過點B,DF過點A,EF過點C.
(1)求方案一中三角形DEF面積S1的最小值;
(2)求方案二中三角形DEF面積S2的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
),若橢圓
上的一動點到右焦點的最短距離為
,且右焦點到直線
的距離等于短半軸的長,已知
,過
的直線與橢圓交于
兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com