【題目】如圖,橢圓的左、右焦點分別為
、
,
,點A為橢圓C上異于左右頂點的任意一點,A關于原點O的對稱點為B,
,且
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若是A關于x軸的對稱點,設點
,連接NA,直線NA與橢圓C相交于點E,直線
與x軸相交于點M,求點M的坐標.
科目:高中數學 來源: 題型:
【題目】拋物線的準線與
軸交于點
,過點
作直線
交拋物線于
,
兩點.
(1)求直線的斜率的取值范圍;
(2)若線段的垂直平分線交
軸于
,求證:
;
(3)若直線的斜率依次為
,
,
,…,
,…,線段
的垂直平分線與
軸的交點依次為
,
,
,…,
,…,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點
為極點,以
軸正半軸為極軸的極坐標中,圓
的方程為
.
(1)寫出直線的普通方程和圓
的直角坐標方程;
(2)若點的坐標為
,圓
與直線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
分別是橢圓
的左,右焦點,
兩點分別是橢圓
的上,下頂點,
是等腰直角三角形,延長
交橢圓
于
點,且
的周長為
.
(1)求橢圓的方程;
(2)設點是橢圓
上異于
的動點,直線
與直
分別相交于
兩點,點
,求證:
的外接圓恒過原點
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,動物園要圍成相同面積的長方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網圍成.
(1)現有可圍長網的材料,每間虎籠的長、寬各設計為多少時,可使每間虎籠面積最大?
(2)若使每間虎籠面積為,則每間虎籠的長、寬各設計為多少時,可使圍成四間虎籠的鋼筋網總長最?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】謝爾賓斯基三角形(英語:Sierpinskitriangle)是一種分形,由波蘭數學家謝爾賓斯基在1915年提出.具體操作是:先取一個實心正三角形(圖1),挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形)(圖2),然后在剩下的三個小三角形中又各挖去一個“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無限連續地作下去.若設操作次數為3(每挖去一次中心三角形算一次操作),在圖中隨機選取一個點,則此點取自黑色三角形的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,點
是圓
上一動點,動點
滿足
,點
在直線
上,且
.
(1)求點的軌跡
的標準方程;
(2)已知點在直線
上,過點
作曲線
的兩條切線,切點分別為
,記點
到直線
的距離分別為
,求
的最大值,并求出此時
點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com