【題目】已知函數.
(1)當時,求函數
在
上的最小值;
(2)若對任意,不等式
恒成立,求
的取值范圍;
【答案】(1);(2)
.
【解析】試題分析:(1)a=0時, ,
,進而得當
時,
,進而得函數單調性可得最值;
(2)由(1)知函數在
上是增函數,且
,使得
,進而函數
在區間
上遞減,在
上遞增,,由x>0,不等式f(x)≥1恒成立,得
,由此能求出a的取值范圍.
試題解析:
(1)時,
,
,
函數
在
上是增函數,
又,
,
當
時,
,
即函數在區間
上遞增,
(2),
由(1)知函數在
上是增函數,且
,使得
,
進而函數在區間
上遞減,在
上遞增,
,
由
,得:
,
,
,
,不等式
恒成立,
,
,
設,則
為增函數,且有唯一零點,設為
,
則,則
,即
,
令,則
單調遞增,且
,
則,即
,
在
為增函數,
則當時,
有最大值,
,
,
的取值范圍
.
科目:高中數學 來源: 題型:
【題目】(導學號:05856333)
已知橢圓C: (a>b>0)的離心率為
,其右焦點為F(c,0),第一象限的點A在橢圓C上,且AF⊥x軸.
(Ⅰ)若橢圓C過點(1,- ),求橢圓C的標準方程;
(Ⅱ)已知直線l:y=x-c與橢圓C交于M,N兩點,且B(4c,yB)為直線l上的點,證明:直線AM,AB,AN的斜率滿足kAB=.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區為了解轄區住戶中離退休老人每天的平均戶外“活動時間”,從轄區住戶的離退休老人中隨機抽取了100位老人進行調查,獲得了每人每天的平均戶外“活動時間”(單位:小時),活動時間按照、
、…、
從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計該社區住戶中離退休老人每天的平均戶外“活動時間”的中位數;
(3)在、
這兩組中采用分層抽樣抽取7人,再從這7人中隨機抽取2人,求抽取的兩人恰好都在同一個組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表:
表1:某年部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;
(2)甲、乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立,記為這兩人中觀看升旗的時刻早于7:00的人數,求
的 分布列和數學期望;
(3)將表1和表2的升旗時刻化為分數后作為樣本數據(如7:31化為),記表2中所有升旗時刻對應數據的方差為
,表1和表2中所有升旗時刻對應數據的方差為
,判斷
與
的大。ㄖ恍鑼懗鼋Y論).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在區間(-∞,+∞)上且以2為周期的函數,對k∈Z,用Ik表示區間(2k-1,2k+1),已知當x∈I0時,f(x)=x2.求f(x)在Ik上的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓
的參數方程為
(
為參數,
是大于0的常數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)求圓的極坐標方程和圓
的直角坐標方程;
(2)分別記直線:
,
與圓
、圓
的異于原點的焦點為
,
,若圓
與圓
外切,試求實數
的值及線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
是矩形,側棱
底面
,
分別是
的中點,
,
.
(Ⅰ)求證: 平面
;
(Ⅱ)求與平面
所成角的正弦值;
(Ⅲ)在棱上是否存在一點
,使得平面
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)和y=g(x)在[-2,2]上的圖象如圖所示.給出下列四個命題:
①方程f[g(x)]=0有且僅有6個根;②方程g[f(x)]=0有且僅有3個根;
③方程f[f(x)]=0有且僅有7個根;④方程g[g(x)]=0有且僅有4個根.
其中正確命題的序號為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com