【題目】某部門在上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統計其乘車等待時間(指乘客從進站口到乘上車的時間,單位:分鐘)將統計數據按,
,
,…,
分組,制成頻率分布直方圖如圖所示:
(1)求a的值;
(2)記A表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”試估計A的概率;
(3)假設同組中的每個數據用該組區間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,求
的值,并直接寫出
與
的大小關系.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費和年銷售量
數據作了初步處理,得到下面的散點圖及一些統計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中=
,
=
(Ⅰ)根據散點圖判斷,與
,哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(Ⅰ)的判斷結果及表中數據,建立y關于x的回歸方程;
(III)已知這種產品的年利z與x,y的關系為,根據(Ⅱ)的結果回答下列問題:
(Ⅰ)當年宣傳費時,年銷售量及年利潤的預報值時多少?
(Ⅱ)當年宣傳費為何值時,年利潤的預報值最大?
附:對于一組數據,
,……,
,其回歸線
的斜率和截距的最小二乘估計分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A(2,2,2),B(2,0,0),C(0,2,-2).
(1)寫出直線BC的一個方向向量;
(2)設平面α經過點A,且BC是α的法向量,M(x,y,z)是平面α內的任意一點,試寫出x,y,z滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分別是AD,PC的中點.
(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP夾角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數據繪制成頻率分布直方圖(如圖),
(1)由圖中數據求a的值;
(2)若要從身高在[120,130),[130,140),[140,150]三組內的學生中,用分層抽樣的方法選取18人參加一項活動,則從身高在[140,150]內的學生中選取的人數應為多少?
(3)估計這所小學的小學生身高的眾數,中位數(保留兩位小數)及平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓系方程:
(
,
),
是橢圓
的焦點,
是橢圓
上一點,且
.
(1)求的方程;
(2)為橢圓
上任意一點,過
且與橢圓
相切的直線
與橢圓
交于
,
兩點,點
關于原點的對稱點為
,求證:
的面積為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校擬派一名跳高運動員參加一項校際比賽,對甲、乙兩名跳高運動員進行了8次選拔比賽,他們的成績(單位:m)如下:
甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;
乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.
經預測,跳高1.65m就很可能獲得冠軍.該校為了獲取冠軍,可能選哪位選手參賽?若預測跳高1.70m方可獲得冠軍呢?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系中,直線的參數方程為
(其中t為參數),現以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)寫出直線l普通方程和曲線C的直角坐標方程;
(2)過點且與直線
平行的直線
交
于
,
兩點,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com