【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分別是AD,PC的中點.
(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP夾角的大小.
【答案】(1)見解析(2)45°.
【解析】
試題分析:本題主要以四棱錐為幾何背景考查線線垂直、線面垂直、二面角、向量法、向量垂直的充要條件等基礎知識,考查學生的空間想象能力、邏輯推理能力、計算能力.第一問,利用已知的垂直關系建立空間直角坐標系,得到點的坐標,從而得到相關向量的坐標,利用向量的數量積為0,證明兩直線垂直,再利用線面垂直的判定得到PC⊥平面BEF;第二問,平面BEF與平面BAP的法向量分別為和
,利用夾角公式求夾角的余弦,從而確定角的值.
試題解析:(1)證明:如圖,
以A為坐標原點,AB,AD,AP所在直線分別為x,y,z軸建立空間直角坐標系.
∵AP=AB=2,BC=AD=,四邊形ABCD是矩形,
∴A,B,C,D,P的坐標為A(0,0,0),B(2,0,0),C(2,,0),D(0,
,0),P(0,0,2).
又E,F分別是AD,PC的中點,∴E(0,,0),F(1,
,1).
∴=(2,
,-2),
=(-1,
,1),
=(1,0,1).
∴=-2+4-2=0,
=2+0-2=0.
∴,
∴PC⊥BF,PC⊥EF.又BF∩EF=F,
∴PC⊥平面BEF.
(2)由(1)知平面BEF的一個法向量n1==(2,
,-2),平面BAP的一個法向量n2=
=(0,
,0),
∴n1·n2=8.
設平面BEF與平面BAP的夾角為θ,
則,
∴θ=45°.∴平面BEF與平面BAP的夾角為45°.
科目:高中數學 來源: 題型:
【題目】為了解高校學生平均每天使用手機的時間長短是否與性別有關,某調查小組隨機抽取了25 名男生、10名女生進行為期一周的跟蹤調查,調查結果如表所示:
平均每天使用手機 | 平均每天使用手機 | 合計 | |
男生 | 15 | 10 | 25 |
女生 | 3 | 7 | 10 |
合計 | 18 | 17 | 35 |
(I) 根據列聯表判斷,是否有90%的把握認為學生使用手機的時間長短與性別有關;
(II)在參與調查的平均每天使用手機不超過3小時的10名男生中,有6人使用國產手機,從這10名男生中任意選取3人,求這3人中使用國產手機的人數的分布列和數學期望.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若,
在
上恒成立,求
的取值范圍;
(2)設數列,
為數列
的前
項和,求證:
;
(3)當時,設函數
的圖象
與函數
的圖象
交于點
,
,過線段
的中點
作
軸的垂線分別交
,
于點
,問是否存在點
,使
在
處的切線與
在
處的切線平行?若存在,求出
的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市計劃銷售某種食品,現邀甲、乙兩個商家進場試銷5天.兩個商家提供的返利方案如下:甲商家每天固定返利60元,且每賣出一件食品商家再返利2元;乙商家無固定返利,賣出30件以內(含30件)的食品,每件食品商家返利4元,超出30件的部分每件返利6元.經統計,兩個商家的試銷情況莖葉圖如下:
甲 | 乙 | |||||||
9 | 8 | 9 | 2 | 8 | 8 | |||
2 | 2 | 3 | 2 | 1 | 1 |
(1)現從甲商家試銷的5天中抽取兩天,求這兩天的銷售量都小于30的概率;
(2)超市擬在甲、乙兩個商家中選擇一家長期銷售,如果僅從日平均返利額的角度考慮,請利用所學的統計學知識為超市作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某部門在上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統計其乘車等待時間(指乘客從進站口到乘上車的時間,單位:分鐘)將統計數據按,
,
,…,
分組,制成頻率分布直方圖如圖所示:
(1)求a的值;
(2)記A表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”試估計A的概率;
(3)假設同組中的每個數據用該組區間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,求
的值,并直接寫出
與
的大小關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“大眾創業,萬眾創新”是李克強總理在本屆政府工作報告中向全國人民發出的口號.某生產企業積極響應號召,大力研發新產品,為了對新研發的一批產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數據(
=1,2,…,6),如表所示:
試銷單價 | 4 | 5 | 6 | 7 | 8 | 9 |
產品銷量 | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知變量具有線性相關關系,求產品銷量
(件)關于試銷單價
(元)的線性回歸方程
;
(參考公式:線性回歸方程中,
的最小二乘估計分別為
,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com