【題目】(本小題滿分12分)
已知函數是奇函數,
的定義域為
.當
時,
.(e為自然對數的底數).
(1)若函數在區間
上存在極值點,求實數
的取值范圍;
(2)如果當x≥1時,不等式恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內有一個“
”號球、兩個“
”號球、三個“
”號球、四個無號球,
箱內有五個“
”號球、五個“
”號球,每次摸獎后放回,消費額滿
元有一次
箱內摸獎機會,消費額滿
元有一次
箱內摸獎機會,摸得有數字的球則中獎,“
”號球獎
元、“
”號球獎
元、“
”號球獎
元,摸得無號球則沒有獎金.
(Ⅰ)經統計,消費額服從正態分布
,某天有
為顧客,請估計消費額
(單位:元)在區間
內并中獎的人數;
(Ⅱ)某三位顧客各有一次箱內摸獎機會,求其中中獎人數
的分布列;
(Ⅲ)某顧客消費額為元,有兩種摸獎方法,方法一:三次
箱內摸獎機會;方法二:一次
箱內摸獎機會,請問:這位顧客選哪一種方法所得獎金的期望值較大.
附:若,則
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個生產公司投資A生產線500萬元,每萬元可創造利潤萬元,該公司通過引進先進技術,在生產線A投資減少了x萬元,且每萬元的利潤提高了
;若將少用的x萬元全部投入B生產線,每萬元創造的利潤為
萬元,其中
.
若技術改進后A生產線的利潤不低于原來A生產線的利潤,求x的取值范圍;
若生產線B的利潤始終不高于技術改進后生產線A的利潤,求a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點
,且與定直線
相切.
(1)求動圓圓心的軌跡
的方程;
(2)過點的任一條直線
與軌跡
交于不同的兩點
,試探究在
軸上是否存在定點
(異于點
),使得
?若存在,求點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設甲、乙不超過1小時離開的概率分別為,
;1小時以上且不超過2小時離開的概率分別為
,
;兩人滑雪時間都不會超過3小時.
(1)求甲、乙兩人所付滑雪費用相同的概率;
(2)設甲、乙兩人所付的滑雪費用之和為隨機變量ξ,求ξ的分布列與數學期望E(ξ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的值域為
,記函數
.
(1)求實數的值;
(2)存在使得不等式
成立,求實數
的取值范圍;
(3)若關于的方程
有5個不等的實數根,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:,直線1過原點O.
(1)若直線l與圓C相切,求直線l的斜率;
(2)若直線l與圓C交于A、B兩點,點P的坐標為,若
.求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為(t為參數),曲線C2的參數方程為
(α為參數),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1和C2的極坐標方程;
(2)直線l的極坐標方程為,直線l與曲線C1和C2分別交于不同于原點的A,B兩點,求|AB|的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com