【題目】如圖1所示,在直角梯形 中,
,
,
,
,
,
.將
沿
折起,使得點
在平面
的正投影
恰好落在
邊上,得到幾何體
,如圖2所示.
(1)求證: ;
(2)求點 到平面
的距離.
科目:高中數學 來源: 題型:
【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學選取若干大學生志愿者,某記者在該大學隨機調查了1000名大學生,以了解他們是否愿意做志愿者工作,得到的數據如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合計 | |
男大學生 | 610 | ||
女大學生 | 90 | ||
合計 | 800 |
(1)根據題意完成表格;
(2)是否有95%的把握認為愿意做志愿者工作與性別有關? 參考公式及數據: ,其中n=a+b+c+d.
P(K2≥K0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
K0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓 (a>b>0)與x軸,y軸的正半輛分別交于A,B兩點,原點O到直線AB的距離為
,該橢圓的離心率為
. (Ⅰ)求橢圓的方程;
(Ⅱ)過點 的直線l與橢圓交于兩個不同的點M,N,求線段MN的垂直平分線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓 :
,直線
:
.
(1)設點 是直線
上的一動點,過
點作圓
的兩條切線,切點分別為
,求四邊形
的面積的最小值;
(2)過 作直線
的垂線交圓
于
點,
為
關于
軸的對稱點,若
是圓
上異于
的兩個不同點,且滿足:
,試證明直線
的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且|QF|= |PQ|. (Ⅰ)求C的方程;
(Ⅱ)過F的直線l與C相交于A、B兩點,若AB的垂直平分線l′與C相交于M、N兩點,且A、M、B、N四點在同一圓上,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一臺機器由于使用時間較長,生產的零件有一些缺損,按不同轉速生產出來的零件有缺損的統計數據如下表所示.
轉速x(轉/秒) | 16 | 14 | 12 | 8 |
每小時生產有缺損零件數y(個) | 11 | 9 | 8 | 5 |
(1)作出散點圖;
(2)如果y與x線性相關,求出回歸直線方程;
(3)若實際生產中,允許每小時的產品中有缺損的零件最多為10個,那么機器的運轉速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題: ①定義在R上的函數f(x)滿足f(2)>f(1),則f(x)一定不是R上的減函數;
②用反證法證明命題“若實數a,b,滿足a2+b2=0,則a,b都為0”時,“假設命題的結論不成立”的敘述是“假設a,b都不為0”.
③把函數y=sin(2x+ )的圖象向右平移
個單位長度,所得到的圖象的函數解析式為y=sin2x.
④“a=0”是“函數f(x)=x3+ax2(x∈R)為奇函數”的充分不必要條件.
其中所有正確命題的序號為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com