【題目】橢圓 (a>b>0)與x軸,y軸的正半輛分別交于A,B兩點,原點O到直線AB的距離為
,該橢圓的離心率為
. (Ⅰ)求橢圓的方程;
(Ⅱ)過點 的直線l與橢圓交于兩個不同的點M,N,求線段MN的垂直平分線在y軸上截距的取值范圍.
【答案】解:(Ⅰ)設直線AB的方程為bx+ay﹣ab=0
∵原點O到直線AB的距離為 ,∴
①
∵橢圓的離心率為 ,∴
②
由①②可得:a=2,b=1
∴橢圓的方程為 ;
(Ⅱ)當直線斜率不存在時,線段MN的垂直平分線的縱截距為0
當直線斜率k存在時,設直線l的方程為 ,代入
,消去y得(9+36k2)x2+120kx+64=0
∵△=14400k2﹣256(9+36k2)>0,∴
設M(x1,y1),N(x2,y2),MN的中點為Q(x0,y0)
∴ =
,
∴Q
∴線段MN的垂直平分線方程為
令x=0,則y= ,
由 ,可得﹣
∴線段MN的垂直平分線在y軸上截距的取值范圍為
【解析】(Ⅰ)設直線AB的方程為bx+ay﹣ab=0,利用原點O到直線AB的距離為 ,橢圓的離心率為
,建立方程可求a、b的值,從而可得橢圓的方程;(Ⅱ)當直線斜率不存在時,線段MN的垂直平分線的縱截距為0;當直線斜率k存在時,設直線l的方程為
,代入
,消去y得(9+36k2)x2+120kx+64=0,進而可求線段MN的垂直平分線方程,由此即可求得線段MN的垂直平分線在y軸上截距的取值范圍.
【考點精析】掌握橢圓的標準方程是解答本題的根本,需要知道橢圓標準方程焦點在x軸:,焦點在y軸:
.
科目:高中數學 來源: 題型:
【題目】直線l1 , l2分別是函數f(x)=sinx,x∈[0,π]圖象上點P1 , P2處的切線,l1 , l2垂直相交于點P,且l1 , l2分別與y軸相交于點A,B,則△PAB的面積為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年12月,京津冀等地數城市指數“爆表”,北方此輪污染為2015年以來最嚴重的污染過程.為了探究車流量與PM2.5的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點圖知y與x具有線性相關關系,求y關于x的線性回歸方程;
(Ⅱ)(。├茫á瘢┧蟮幕貧w方程,預測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規定:當一天內PM2.5的濃度平均值在(0,50]內,空氣質量等級為優;當一天內PM2.5的濃度平均值在(50,100]內,空氣質量等級為良.為使該市某日空氣質量為優或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數.)
參考公式:回歸直線的方程是 =
x+
,其中
=
,
=
﹣
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示,在直角梯形 中,
,
,
,
,
,
.將
沿
折起,使得點
在平面
的正投影
恰好落在
邊上,得到幾何體
,如圖2所示.
(1)求證: ;
(2)求點 到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( )
A.經過點P0(x0 , y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經過定點A(0,b)的直線都可以用方程y=kx+b表示
C.經過任意兩個不同點P1(x1 , y1),P2(x2 , y2)的直線都可用方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示
D.不經過原點的直線都可以用方程 表示
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 是圓柱的母線,
是
的直徑,
是底面圓周上異于
的任意一點,
,
.
(1)求證:
(2)當三棱錐 的體積最大時,求
與平面
所成角的大;
(3) 上是否存在一點
,使二面角
的平面角為45°?若存在,求出此時
的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com