精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側面底面ABCD,且,若E,F分別為PC,BD的中點.

(I)求證:EF//平面PAD;

(II)求三棱錐F-DEC的體積;

(III)在線段CD上是否存在一點G,使得平面平面PDC?若存在,請說明其位置,并加以證明;若不存在,請說明理由.

【答案】(I)證明見解析;(II);(Ⅲ) 的中點為滿足條件的點

【解析】

(I)連接,利用三角形的中位線定理即可得到,再利用線面平行的判定定理即可證明;
(II)取的中點,連接.由等腰三角形的性質可得,再利用面面垂直的性質可得底面,計算出三棱錐的高,利用三棱錐的體積計算公式即可得出;
(III)易得的中點滿足條件,再證明平面即可證明平面平面PDC.

(Ⅰ)證明:連接,則的中點,在中, ,

平面平面,

平面;

(Ⅱ)如圖,取的中點,連接.

,∴.

∵側面底面,側面底面平面,

底面.

的中點,∴三棱錐的高為,

,且,∴,∴,

∴三棱錐的體積是.

(Ⅲ) 的中點為滿足條件的點

證明:取的中點,連接,

則因為E,F分別為PC,BD的中點,的中點,的中位線,

,平面平面,故平面.

同理平面.因為,故平面平面.

又正方形,故,

又側面底面,側面底面,平面

平面,平面.

平面,故平面平面PDC

的中點為滿足條件的點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列結論中

①若空間向量,,則的充要條件;

②若的必要不充分條件,則實數的取值范圍為;

③已知為兩個不同平面,,為兩條直線,,,,則的充要條件;

④已知向量為平面的法向量,為直線的方向向量,則的充要條件.

其中正確命題的序號有(

A.②③B.②④C.②③④D.①②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】條件

1)條件:復數,指明的說明條件?若滿足條件,記,求

2)若上問中,記時的在平面直角坐標系的點存在過點的拋物線頂點在原點,對稱軸為坐標軸,求拋物線的解析式。

3)自(2)中點出發的一束光線經拋物線上一點反射后沿平行于拋物線對稱軸方向射出,求:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是  

A. 棱柱的側面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉一周所得的幾何體是圓錐

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.

(1)求實數a的值;

(2)設g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點為別為F1、F2,且過點

1)求橢圓的標準方程;

2)如圖,點A為橢圓上一位于x軸上方的動點,AF2的延長線與橢圓交于點BAO的延長線與橢圓交于點C,求ABC面積的最大值,并寫出取到最大值時直線BC的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】首項為O的無窮數列同時滿足下面兩個條件:

;②

(1)請直接寫出的所有可能值;

(2)記,若對任意成立,求的通項公式;

(3)對于給定的正整數,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,動點分別與兩個定點,的連線的斜率之積為.

(1)求動點的軌跡的方程;

(2)設過點的直線與軌跡交于,兩點,判斷直線與以線段為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是函數(其中常數)圖象上的兩個動點,點,若的最小值為0,則函數的最大值為__________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视