【題目】設橢圓中心在坐標原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(1)若=6
,求k的值;
(2)求四邊形AEBF面積的最大值.
【答案】見解析
【解析】(1)依題意得橢圓的方程為+y2=1,直線AB,EF的方程分別為x+2y=2,y=kx(k>0).如圖,設D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2滿足方程(1+4k2)x2=4,故x2=-x1=
.①
由=6
知x0-x1=6(x2-x0),
得x0= (6x2+x1)=
x2=
;
由D在AB上知x0+2kx0=2,
得x0=.
所以=
,
化簡得24k2-25k+6=0,
解得k=或k=
.
(2)根據點到直線的距離公式和①式知,點E,F到AB的距離分別為
h1==
,
h2==
.
又|AB|==
,
所以四邊形AEBF的面積為
S=|AB|(h1+h2)
=·
·
=
=2≤2
,
當4k2=1(k>0),即當k=時,上式取等號.
所以S的最大值為2.
即四邊形AEBF面積的最大值為2.
科目:高中數學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發芽多少之間的關系,現在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發芽數y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發芽的種子數分別為m,n,求事件“m,n均不小于25”的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出y關于x的線性回歸方程=
x+
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這300樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區間為: .估計該校學生每周平均體育運動時間超過4小時的概率;
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠今年擬舉行促銷活動,經調查測算,該廠產品的年銷售量(即該廠的年產量)x(萬件)與年促銷費m(萬元)(m≥0)滿足x=3-.已知今年生產的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).
(1)將今年該產品的利潤y(萬元)表示為年促銷費m(萬元)的函數;
(2)求今年該產品利潤的最大值,此時促銷費為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數的底數.
(I)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數a的值;
(II)設函數F(x)=-x[g(x)+x-2],若F(x)在區間(m,m+1)(m∈Z)內存在唯一的極值點,求m的值;
(III)用max{m,n}表示m,n中的較大者,記函數h(x)=max{f(x),g(x)}(x>0). 若函數h(x)在(0,+∞)上恰有2個零點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3-3ax-1,a≠0.
(1)求f(x)的單調區間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4,且位于x軸上方的點,A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M.
(1)求拋物線的方程;
(2)以M為圓心,MB為半徑作圓M,當K(m,0)是x軸上一動點時,討論直線AK與圓M的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)求函數在
上的最小值;
(2)對一切,
恒成立,求實數
的取值范圍;
(3)探討函數是否存在零點?若存在,求出函數
的零點;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com