【題目】某化工廠生產的某種化工產品,當年產量在150噸至250噸之間,其生產的總成本y(萬元)與年產量x(噸)之間的函數關系式可近似地表示為
問:
(1)年產量為多少噸時,每噸的平均成本最低?并求出最低成本?
(2)若每噸平均出廠價為16萬元,則年產量為多少噸時,可獲得最大利潤?并求出最大利潤?
科目:高中數學 來源: 題型:
【題目】已知函數(
為常數,
是自然對數的底數),曲線
在點
處的切線與
軸平行.
(1)求的值;
(2)求的單調區間;
(3)設,其中
為
的導函數.證明:對任意
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為
的橢圓
的一個焦點為圓
:
的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓
上一點,過
作兩條斜率之積為
的直線
,
,當直線
,
都與圓
相切時,求
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了估計某校的一次數學考試情況,現從該校參加考試的600名學生中隨機抽出60名學生,其成績(百分制)均在[40,100)上,將這些成績分成六段[40,50),[50,60)…[90,100),后得到如圖所示部分頻率分布直方圖.
(1)求抽出的60名學生中分數在[70,80)內的人數;
(2)若規定成績不小于85分為優秀,則根據頻率分布直方圖,估計該校優秀人數.
(3)根據頻率分布直方圖算出樣本數據的中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,且
的離心率為
.
(1)求的方程;
(2)過的頂點
作兩條互相垂直的直線與橢圓分別相交于
兩點.若
的角平分線方程為
,求
的面積及直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)畫出這個函數的圖象;
(2)指出函數f(x)的單調區間,并說明在各個單調區間上f(x)是增函數還是減函數;
(3)求函數的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足:對任意的x1 , x2∈R(x1≠x2),有 <0,則( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com