【題目】已知函數(
是自然對數的底數),
(1)求曲線在點
處的切線方程;
(2)求的單調區間;
(3)設,其中
為
的導函數,證明:對任意
,
科目:高中數學 來源: 題型:
【題目】已知f(x)=2x2+bx+c.
(1)對任意x∈[﹣1,1],f(x)的最大值與最小值之差不大于6,求b的取值范圍;
(2)若f(x)=0有兩個不同實根,f(f(x))無零點,求證: ﹣
>1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量
(單位:t)和年利潤
(單位:千元)的影響.對近8年的年宣傳費
和年銷售量
(i=1,2,…,8)數據作了初步處理,得到右面的散點圖及一些統計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根據散點圖判斷, 與
哪一個適宜作為年銷售量
關于年宣傳費
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立關于
的回歸方程;
(3)已知這種產品的年利潤與
的關系為
.根據(2)的結果回答下列問題:
①年宣傳費=49時,年銷售量及年利潤的預報值是多少?
②年宣傳費為何值時,年利潤的預報值最大?
附:對于一組數據,
…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等比數列{an}的前n項和為Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=|2n﹣5|an , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖在棱長均為2的正四棱錐P﹣ABCD中,點E為PC中點,則下列命題正確的是( )
A.BE平行面PAD,且直線BE到面PAD距離為
B.BE平行面PAD,且直線BE到面PAD距離為
C.BE不平行面PAD,且BE與平面PAD所成角大于
D.BE不平行面PAD,且BE與面PAD所成角小于
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知圓
:
,點
,點
(
),以
為圓心,
為半徑作圓,交圓
于點
,且
的平分線交線段
于點
.
(1)當變化時,點
始終在某圓錐曲線
上運動,求曲線
的方程;
(2)已知直線 過點
,且與曲線
交于
兩點,記
面積為
,
面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點,且BE⊥B1C.
(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com