【題目】在極坐標系中,圓C的極坐標方程為:ρ2=4ρ(cosθ+sinθ)﹣6.若以極點O為原點,極軸所在直線為x軸建立平面直角坐標系.
(Ⅰ)求圓C的參數方程;
(Ⅱ)在直角坐標系中,點P(x,y)是圓C上動點,試求x+y的最大值,并求出此時點P的直角坐標.
科目:高中數學 來源: 題型:
【題目】某市隨機抽取部分企業調查年上繳稅收情況{單位萬元,將所得數據繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100]樣本數據分組為[0,20),[20,40)[40,60)[60,80),[80,100)
(1)求直方圖中x的值;
(2)如果年上繳稅收不少于60萬元的企業可申請政策優惠,若共抽取企業1200個,試估計有多少企業可以申請政策優惠;
(3)從企業中任選4個,這4個企業年上繳稅收少于20萬元的個數記為X,求X的分布列和數學期望(以直方圖中的頻率作為概率)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在(0,+∞)上的單調函數f(x),對任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3,若方程f(x)+f′(x)=a有兩個不同的實數根,則實數a的取值范圍是( 。
A.(1,+∞)
B.(2+ ,+∞)
C.(2﹣ ,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,等腰梯形ABCD的底角 A等于60°,直角梯形 ADEF所在的平面垂直于平面ABCD,∠EDA=90°,且ED=AD=2AB=2AF.
(1)證明:平面ABE⊥平面EBD;
(2)若三棱錐 A﹣BDE的外接球的體積為 ,求三棱錐 A﹣BEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC中,AC=2,A=120°, .
(Ⅰ)求邊AB的長;
(Ⅱ)設(3,4)是BC邊上一點,且△ACD的面積為 ,求∠ADC的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}是公差為d(d≠0)的等差數列,Sn為其前n項和,a1 , a2 , a5成等比數列.
(Ⅰ)證明S1 , S3 , S9成等比數列;
(Ⅱ)設a1=1,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校隨機抽取部分男生進行身體素質測試,獲得擲實心球的成績數據,整理得到數據分組及頻率分布表,成績在11.0米(精確到0.1米)以上(含)的男生為“優秀生”.
分組(米) | 頻數 | 頻率 |
[3.0,5.0) | 0.10 | |
[5.0,7.0) | 0.10 | |
[7.0,9.0) | 0.10 | |
[9.0,11.0) | 0.20 | |
[11.0,13.0) | 0.40 | |
[13.0,15.0) | 10 | |
合計 | 1.00 |
(Ⅰ)求參加測試的男生中“優秀生”的人數;
(Ⅱ)從參加測試男生的成績中,根據表中分組情況,按分層抽樣的方法抽取10名男生的成績作為一個樣本,再從該樣本中任選2名男生的成績,求至少選出1名男生的成績不低于13.0米的概率;
(Ⅲ)若將這次測試的頻率作為概率,從該校全體男生中隨機抽取3人,記X表示3人中“優秀生”的人數,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓 :
(
)與直線
:
相切,設點
為圓上一動點,
軸于
,且動點
滿足
,設動點
的軌跡為曲線
.
(1)求曲線 的方程;
(2)直線 與直線
垂直且與曲線
交于
,
兩點,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com