精英家教網 > 高中數學 > 題目詳情

【題目】的內角的對邊分別為,已知

(1)求

(2)若,求的面積.

【答案】(1);(2).

【解析】

(1)由正弦定理得 sinA=sinBcosC+sinCsinB,從而cosBsinC=sinCsinB,進而tanB=,由此能求出B.(2)利用余弦定理得a,由此能求出△ABC的面積.

(1)由abcosC+csinB及正弦定理,可得:sinA=sinBcosC+sinCsinB,①

又sinA=sin(π﹣BC)=sin(B+C)=sinBcosC+cosBsinC②,①②sinCsinB=cosBsinC,又三角形中,sinC≠0,所以sinB=cosBB∈(0,π),所以B

(2)△ABC的面積為S由余弦定理,b2a2+c2﹣2accosB,得4=a2+c2,c2=4c=2,所以△ABC的面積為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于區間[a,b](a<b),若函數同時滿足:①在[a,b]上是單調函數,②函數在[a,b]的值域是[a,b],則稱區間[a,b]為函數的“保值”區間

(1)求函數的所有“保值”區間

(2)函數是否存在“保值”區間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一次函數上的減函數,,且 f [ f(x)]=16x-3.

(1)求

(2)若在(-2,3)單調遞增,求實數的取值范圍;

(3)當時,有最大值1,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數學名著,書中提到了一種名為“芻甍”的五面體(如圖):面ABCD為矩形,棱EF∥AB.若此幾何體中,AB=4,EF=2,△ADE和△BCF都是邊長為2的等邊三角形,則此幾何體的表面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和滿足,數列的前項和滿足.

(1)求數列的通項公式;

(2)設,求數列的前項和;

(3)數列中是否存在不同的三項,,使這三項恰好構成等差數列?若存在,求出,,的關系;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中

(1)當時,求函數上的值域;

(2)若函數上的最小值為3,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣kx+k.
(Ⅰ)若f(x)≥0有唯一解,求實數k的值;
(Ⅱ)證明:當a≤1時,x(f(x)+kx﹣k)<ex﹣ax2﹣1.
(附:ln2≈0.69,ln3≈1.10, ,e2≈7.39)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x+ |+|x﹣2m|(m>0). (Ⅰ)求證:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视