【題目】記數列的前n項和為
,其中所有奇數項之和為
,所有偶數項之和為
若
是等差數列,項數n為偶數,首項
,公差
,且
,求
;
若數列
的首項
,滿足
,其中實常數
,且
,請寫出滿足上述條件常數t的兩個不同的值和它們所對應的數列.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率是
,上頂點B是拋物線
的焦點.
(1)求橢圓的標準方程;
(2)若是橢圓
上的兩個動點,且
(
是坐標原點),試問:點到直線的距離是否為定值?若是,試求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點E是棱PC的中點,平面ABE與棱PD交于點F.
(1)求證:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知底面邊長為a的正三棱柱(底面是等邊三角形的直三棱柱)的六個頂點在球
上,且球
與此正三棱柱的5個面都相切,則球
與球
的表面積之比為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若存在區間
,使得
,則稱函數
為“可等域函數”,區間
為函數
的一個“可等域區間”.給出下列4個函數:
①;②
; ③
; ④
.
其中存在唯一“可等域區間”的“可等域函數”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在直角坐標系中,曲線
的方程為
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內有20cm深的溶液.現將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內的溶液不會溢出,角的最大值是多少?
(2)現需要倒出不少于的溶液,當
時,能實現要求嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調區間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(1)證明:BD⊥PC;
(2)若AD=4,BC=2,設AC∩BD=O,且∠PDO=60°,求四棱錐P-ABCD的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com