【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點
(1)求證:EF⊥CD;
(2)在平面PAD內求一點G,使GF⊥平面PCB,并證明你的結論;
(3)求DB與平面DEF所成角的正弦值.
【答案】
(1)證明:以DA、DC、DP所在直線為x軸、y軸、z軸建立空間直角坐標系(如圖),
設AD=a,則D(0,0,0)、A(a,0,0)、B(a,a,0)、C(0,a,0)、E(a, ,0)、F(
,
,
)、P(0,0,a)
∵ =(﹣
,0,
),
=(0,a,0),
∴
=(﹣
,0,
)(0,a,0)=0,
∴ ⊥
∴EF⊥DC
(2)解:設G(x,0,z),則G∈平面PAD.
=(x﹣
,﹣
,z﹣
),
=(x﹣
,﹣
,z﹣
)(a,0,0)=a(x﹣
)=0,∴x=
;
=(x﹣
,﹣
,z﹣
)(0,﹣a,a)=
+a(z﹣
)=0,∴z=0.
∴G點坐標為( ,0,0),即G點為AD的中點
(3)解:設平面DEF的法向量為 =(x,y,z).
由 得:
取x=1,則y=﹣2,z=1,
∴ =(1,﹣2,1).
cos< ,
>=
=
=
,
∴DB與平面DEF所成角的正弦值的大小為
【解析】以DA、DC、DP所在直線為x軸、y軸、z軸建立空間直角坐標系,設AD=a,可求出各點的坐標;(1)求出EF和CD的方向向量,根據向量垂直的充要條件,可證得 ⊥
,即EF⊥DC.(2)設G(x,0,z),根據線面垂直的性質,可得
=
=0,進而可求出x,z值,得到G點的位置;(3)求出平面DEF的法向量為
,及DB的方向
的坐標,代入向量夾角公式,可得DB與平面DEF所成角的正弦值
【考點精析】解答此題的關鍵在于理解直線與平面垂直的判定的相關知識,掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想,以及對直線與平面垂直的性質的理解,了解垂直于同一個平面的兩條直線平行.
科目:高中數學 來源: 題型:
【題目】設p:A={x|2x2﹣3ax+a2<0},q:B={x|x2+3x﹣10≤0}.
(1)求A;
(2)當a<0時,若¬p是¬q的必要不充分條件,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設頂點在原點,焦點在軸上的拋物線過點
,過
作拋物線的動弦
,
,并設它們的斜率分別為
,
.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求證:直線
的斜率為定值,并求出其值;
(III)若,求證:直線
恒過定點,并求出其坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從甲乙兩個城市分別隨機抽取16臺自動售貨機,對其銷售額進行統計,統計數據用莖葉圖表示(如圖所示),設甲乙兩組數據的平均數分別為中位數分別為
則( )
A. x甲<x乙,m甲>m乙 B. x甲>x乙,m甲>m乙
C. x甲>x乙,m甲<m乙 D. x甲<x乙,m甲<m乙
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某幾何體的三視圖都是直角三角形,則該幾何體的體積等于__________.
【答案】10
【解析】幾何體為三棱錐,(高為4,底面為直角三角形),體積為
點睛:空間幾何體體積問題的常見類型及解題策略
(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.
(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉換法、分割法、補形法等方法進行求解.
(3)若以三視圖的形式給出幾何體,則應先根據三視圖得到幾何體的直觀圖,然后根據條件求解.
【題型】填空題
【結束】
15
【題目】如圖:在三棱錐中,已知底面
是以
為斜邊的等腰直角三角形,且側棱長
,則三棱錐
的外接球的表面積等于__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數f(x)=(x+l)lnx﹣ax+a (a為正實數,且為常數)
(1)若f(x)在(0,+∞)上單調遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com